Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 26
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Laas
1
76 kgNakken
5
72 kgMalmberg
6
68 kgLašinis
7
69 kgFrancisco
9
62 kgRosenlund
11
72 kgTheiler
12
75 kgDe Rossi
15
70 kgPomorski
17
76 kgVahtra
18
85 kgCzabok
20
65 kgBogdanovičs
21
68 kgHertz
26
68 kgCajucom
31
60 kgSmit
32
72 kgTamm
34
73 kgKiskonen
35
64 kgNisu
36
84 kgTvergaard
38
72 kgJanuškevičius
41
72 kgKmieliauskas
42
68 kg
1
76 kgNakken
5
72 kgMalmberg
6
68 kgLašinis
7
69 kgFrancisco
9
62 kgRosenlund
11
72 kgTheiler
12
75 kgDe Rossi
15
70 kgPomorski
17
76 kgVahtra
18
85 kgCzabok
20
65 kgBogdanovičs
21
68 kgHertz
26
68 kgCajucom
31
60 kgSmit
32
72 kgTamm
34
73 kgKiskonen
35
64 kgNisu
36
84 kgTvergaard
38
72 kgJanuškevičius
41
72 kgKmieliauskas
42
68 kg
Weight (KG) →
Result →
85
60
1
42
# | Rider | Weight (KG) |
---|---|---|
1 | LAAS Martin | 76 |
5 | NAKKEN Tobias Risan | 72 |
6 | MALMBERG Matias | 68 |
7 | LAŠINIS Venantas | 69 |
9 | FRANCISCO Jude Gabriel | 62 |
11 | ROSENLUND Stian | 72 |
12 | THEILER Ole | 75 |
15 | DE ROSSI Lucas | 70 |
17 | POMORSKI Michał | 76 |
18 | VAHTRA Norman | 85 |
20 | CZABOK Konrad | 65 |
21 | BOGDANOVIČS Māris | 68 |
26 | HERTZ Benjamin | 68 |
31 | CAJUCOM Ean | 60 |
32 | SMIT Willie | 72 |
34 | TAMM Lauri | 73 |
35 | KISKONEN Siim | 64 |
36 | NISU Oskar | 84 |
38 | TVERGAARD Mikkel | 72 |
41 | JANUŠKEVIČIUS Mantas | 72 |
42 | KMIELIAUSKAS Rokas | 68 |