Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 25
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Laas
1
76 kgNakken
4
72 kgMalmberg
6
68 kgLašinis
7
69 kgFrancisco
9
62 kgRosenlund
10
72 kgTheiler
13
75 kgVahtra
15
85 kgPomorski
16
76 kgBogdanovičs
19
68 kgDe Rossi
21
70 kgHertz
22
68 kgCajucom
27
60 kgKiskonen
29
64 kgTamm
30
73 kgTvergaard
31
72 kgNisu
32
84 kgKmieliauskas
35
68 kg
1
76 kgNakken
4
72 kgMalmberg
6
68 kgLašinis
7
69 kgFrancisco
9
62 kgRosenlund
10
72 kgTheiler
13
75 kgVahtra
15
85 kgPomorski
16
76 kgBogdanovičs
19
68 kgDe Rossi
21
70 kgHertz
22
68 kgCajucom
27
60 kgKiskonen
29
64 kgTamm
30
73 kgTvergaard
31
72 kgNisu
32
84 kgKmieliauskas
35
68 kg
Weight (KG) →
Result →
85
60
1
35
# | Rider | Weight (KG) |
---|---|---|
1 | LAAS Martin | 76 |
4 | NAKKEN Tobias Risan | 72 |
6 | MALMBERG Matias | 68 |
7 | LAŠINIS Venantas | 69 |
9 | FRANCISCO Jude Gabriel | 62 |
10 | ROSENLUND Stian | 72 |
13 | THEILER Ole | 75 |
15 | VAHTRA Norman | 85 |
16 | POMORSKI Michał | 76 |
19 | BOGDANOVIČS Māris | 68 |
21 | DE ROSSI Lucas | 70 |
22 | HERTZ Benjamin | 68 |
27 | CAJUCOM Ean | 60 |
29 | KISKONEN Siim | 64 |
30 | TAMM Lauri | 73 |
31 | TVERGAARD Mikkel | 72 |
32 | NISU Oskar | 84 |
35 | KMIELIAUSKAS Rokas | 68 |