Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 80
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Rogina
1
70 kgKocjan
2
72 kgHondo
3
73 kgMahorič
4
68 kgIglinskiy
5
68 kgMizurov
6
68 kgFofonov
7
65 kgMizbani
9
67 kgVeelers
11
75 kgMetlushenko
12
82 kgAxelsson
13
73 kgKazemi
15
71 kgDe Backer
23
73 kgWong
25
65 kgCieślik
28
65 kgGruzdev
29
78 kgPaďour
32
59 kgLapthorne
33
70 kgJanse van Rensburg
38
63 kgCraven
46
75 kgHonchar
47
67 kgLiu
49
67 kgWang
50
70 kgDuma
51
64 kg
1
70 kgKocjan
2
72 kgHondo
3
73 kgMahorič
4
68 kgIglinskiy
5
68 kgMizurov
6
68 kgFofonov
7
65 kgMizbani
9
67 kgVeelers
11
75 kgMetlushenko
12
82 kgAxelsson
13
73 kgKazemi
15
71 kgDe Backer
23
73 kgWong
25
65 kgCieślik
28
65 kgGruzdev
29
78 kgPaďour
32
59 kgLapthorne
33
70 kgJanse van Rensburg
38
63 kgCraven
46
75 kgHonchar
47
67 kgLiu
49
67 kgWang
50
70 kgDuma
51
64 kg
Weight (KG) →
Result →
82
59
1
51
# | Rider | Weight (KG) |
---|---|---|
1 | ROGINA Radoslav | 70 |
2 | KOCJAN Jure | 72 |
3 | HONDO Danilo | 73 |
4 | MAHORIČ Mitja | 68 |
5 | IGLINSKIY Valentin | 68 |
6 | MIZUROV Andrey | 68 |
7 | FOFONOV Dmitriy | 65 |
9 | MIZBANI Ghader | 67 |
11 | VEELERS Tom | 75 |
12 | METLUSHENKO Yuri | 82 |
13 | AXELSSON Niklas | 73 |
15 | KAZEMI Sarai Ahad | 71 |
23 | DE BACKER Bert | 73 |
25 | WONG Kam-Po | 65 |
28 | CIEŚLIK Paweł | 65 |
29 | GRUZDEV Dmitriy | 78 |
32 | PAĎOUR František | 59 |
33 | LAPTHORNE Darren | 70 |
38 | JANSE VAN RENSBURG Jacques | 63 |
46 | CRAVEN Dan | 75 |
47 | HONCHAR Serhiy | 67 |
49 | LIU Biao | 67 |
50 | WANG Meiyin | 70 |
51 | DUMA Vladimir | 64 |