Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 7
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Paredes
2
66 kgMulubrhan
3
60 kgDupont
5
72 kgLópez de Abetxuko
7
74 kgViviani
8
69 kgZanoncello
9
64 kgMudgway
13
65 kgSunderland
14
67 kgFernández
15
78 kgSmit
16
72 kgSevilla
17
62 kgRasenberg
19
78 kgvan den Broek
21
70 kgVerwilt
22
76 kgLunder
26
78 kgDrege
29
78 kgZambelli
30
70 kgChaiyasombat
32
58 kg
2
66 kgMulubrhan
3
60 kgDupont
5
72 kgLópez de Abetxuko
7
74 kgViviani
8
69 kgZanoncello
9
64 kgMudgway
13
65 kgSunderland
14
67 kgFernández
15
78 kgSmit
16
72 kgSevilla
17
62 kgRasenberg
19
78 kgvan den Broek
21
70 kgVerwilt
22
76 kgLunder
26
78 kgDrege
29
78 kgZambelli
30
70 kgChaiyasombat
32
58 kg
Weight (KG) →
Result →
78
58
2
32
# | Rider | Weight (KG) |
---|---|---|
2 | PAREDES Wilmar | 66 |
3 | MULUBRHAN Henok | 60 |
5 | DUPONT Timothy | 72 |
7 | LÓPEZ DE ABETXUKO Andoni | 74 |
8 | VIVIANI Attilio | 69 |
9 | ZANONCELLO Enrico | 64 |
13 | MUDGWAY Luke | 65 |
14 | SUNDERLAND Dylan | 67 |
15 | FERNÁNDEZ Miguel Ángel | 78 |
16 | SMIT Willie | 72 |
17 | SEVILLA Óscar | 62 |
19 | RASENBERG Martijn | 78 |
21 | VAN DEN BROEK Frank | 70 |
22 | VERWILT Mauro | 76 |
26 | LUNDER Eirik | 78 |
29 | DREGE André | 78 |
30 | ZAMBELLI Samuele | 70 |
32 | CHAIYASOMBAT Thanakhan | 58 |