Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 11
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Mulubrhan
1
60 kgParedes
3
66 kgMudgway
4
65 kgDupont
8
72 kgFagúndez
10
67 kgDrege
11
78 kgSevilla
13
62 kgLópez de Abetxuko
14
74 kgViviani
15
69 kgZanoncello
16
64 kgSunderland
18
67 kgFernández
19
78 kgSmit
20
72 kgBou
21
62 kgRasenberg
26
78 kgVerwilt
31
76 kgvan den Broek
32
70 kgLunder
35
78 kgZambelli
36
70 kgChaiyasombat
37
58 kg
1
60 kgParedes
3
66 kgMudgway
4
65 kgDupont
8
72 kgFagúndez
10
67 kgDrege
11
78 kgSevilla
13
62 kgLópez de Abetxuko
14
74 kgViviani
15
69 kgZanoncello
16
64 kgSunderland
18
67 kgFernández
19
78 kgSmit
20
72 kgBou
21
62 kgRasenberg
26
78 kgVerwilt
31
76 kgvan den Broek
32
70 kgLunder
35
78 kgZambelli
36
70 kgChaiyasombat
37
58 kg
Weight (KG) →
Result →
78
58
1
37
# | Rider | Weight (KG) |
---|---|---|
1 | MULUBRHAN Henok | 60 |
3 | PAREDES Wilmar | 66 |
4 | MUDGWAY Luke | 65 |
8 | DUPONT Timothy | 72 |
10 | FAGÚNDEZ Eric Antonio | 67 |
11 | DREGE André | 78 |
13 | SEVILLA Óscar | 62 |
14 | LÓPEZ DE ABETXUKO Andoni | 74 |
15 | VIVIANI Attilio | 69 |
16 | ZANONCELLO Enrico | 64 |
18 | SUNDERLAND Dylan | 67 |
19 | FERNÁNDEZ Miguel Ángel | 78 |
20 | SMIT Willie | 72 |
21 | BOU Joan | 62 |
26 | RASENBERG Martijn | 78 |
31 | VERWILT Mauro | 76 |
32 | VAN DEN BROEK Frank | 70 |
35 | LUNDER Eirik | 78 |
36 | ZAMBELLI Samuele | 70 |
37 | CHAIYASOMBAT Thanakhan | 58 |