Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 13
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Mulubrhan
3
60 kgRasenberg
4
78 kgParedes
5
66 kgArdila
7
59 kgSevilla
8
62 kgBaasankhuu
9
62 kgBou
10
62 kgBurnett
11
73 kgGandin
12
69 kgSoto
13
66 kgFagúndez
15
67 kgvan den Broek
17
70 kgFuentes
18
77 kgSafarzadeh
21
66 kgDrege
22
78 kgReyes
23
55 kgZanoncello
24
64 kgSierra
26
66 kgChristensen
28
63 kgBergström Frisk
29
67 kg
3
60 kgRasenberg
4
78 kgParedes
5
66 kgArdila
7
59 kgSevilla
8
62 kgBaasankhuu
9
62 kgBou
10
62 kgBurnett
11
73 kgGandin
12
69 kgSoto
13
66 kgFagúndez
15
67 kgvan den Broek
17
70 kgFuentes
18
77 kgSafarzadeh
21
66 kgDrege
22
78 kgReyes
23
55 kgZanoncello
24
64 kgSierra
26
66 kgChristensen
28
63 kgBergström Frisk
29
67 kg
Weight (KG) →
Result →
78
55
3
29
# | Rider | Weight (KG) |
---|---|---|
3 | MULUBRHAN Henok | 60 |
4 | RASENBERG Martijn | 78 |
5 | PAREDES Wilmar | 66 |
7 | ARDILA Andrés Camilo | 59 |
8 | SEVILLA Óscar | 62 |
9 | BAASANKHUU Myagmarsuren | 62 |
10 | BOU Joan | 62 |
11 | BURNETT Josh | 73 |
12 | GANDIN Stefano | 69 |
13 | SOTO Antonio Jesús | 66 |
15 | FAGÚNDEZ Eric Antonio | 67 |
17 | VAN DEN BROEK Frank | 70 |
18 | FUENTES Ángel | 77 |
21 | SAFARZADEH Saeid | 66 |
22 | DREGE André | 78 |
23 | REYES Aldemar | 55 |
24 | ZANONCELLO Enrico | 64 |
26 | SIERRA Yecid Arturo | 66 |
28 | CHRISTENSEN Ryan | 63 |
29 | BERGSTRÖM FRISK Erik | 67 |