Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 25
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Plowright
1
80 kgMudgway
2
65 kgZanoncello
3
64 kgRasch
4
71 kgSinkeldam
5
77 kgPawlak
6
81 kgLaas
7
76 kgJanse van Rensburg
9
74 kgDupont
10
72 kgAlleno
11
69 kgColnaghi
12
63 kgAvondts
13
62 kgQuartucci
14
64 kgEefting-Bloem
16
75 kgBatt
17
76 kgPersico
18
65 kgBouglas
19
71 kg
1
80 kgMudgway
2
65 kgZanoncello
3
64 kgRasch
4
71 kgSinkeldam
5
77 kgPawlak
6
81 kgLaas
7
76 kgJanse van Rensburg
9
74 kgDupont
10
72 kgAlleno
11
69 kgColnaghi
12
63 kgAvondts
13
62 kgQuartucci
14
64 kgEefting-Bloem
16
75 kgBatt
17
76 kgPersico
18
65 kgBouglas
19
71 kg
Weight (KG) →
Result →
81
62
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | PLOWRIGHT Jensen | 80 |
2 | MUDGWAY Luke | 65 |
3 | ZANONCELLO Enrico | 64 |
4 | RASCH Jesper | 71 |
5 | SINKELDAM Ramon | 77 |
6 | PAWLAK Tobiasz | 81 |
7 | LAAS Martin | 76 |
9 | JANSE VAN RENSBURG Reinardt | 74 |
10 | DUPONT Timothy | 72 |
11 | ALLENO Clément | 69 |
12 | COLNAGHI Luca | 63 |
13 | AVONDTS Mathis | 62 |
14 | QUARTUCCI Lorenzo | 64 |
16 | EEFTING-BLOEM Roy | 75 |
17 | BATT Ethan | 76 |
18 | PERSICO Davide | 65 |
19 | BOUGLAS Georgios | 71 |