Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 11
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
van Schip
1
84 kgPapok
3
76 kgGroen
4
70.5 kgSayar
6
64 kgHristov
8
57 kgLašinis
15
69 kgBalkan
16
64 kgBalkan
17
69 kgAkdilek
18
68 kgMirza
19
60 kgSloof
20
70 kgSamli
21
75 kgKüçükbay
22
70 kgTalen
23
76 kgIvashkin
27
73 kgRamanau
28
68 kgKal
31
72 kgÖrken
40
69 kgDžervus
42
77 kgŠiškevičius
43
70 kgBazhkou
46
65 kgSergis
50
75 kgKafes
53
71 kg
1
84 kgPapok
3
76 kgGroen
4
70.5 kgSayar
6
64 kgHristov
8
57 kgLašinis
15
69 kgBalkan
16
64 kgBalkan
17
69 kgAkdilek
18
68 kgMirza
19
60 kgSloof
20
70 kgSamli
21
75 kgKüçükbay
22
70 kgTalen
23
76 kgIvashkin
27
73 kgRamanau
28
68 kgKal
31
72 kgÖrken
40
69 kgDžervus
42
77 kgŠiškevičius
43
70 kgBazhkou
46
65 kgSergis
50
75 kgKafes
53
71 kg
Weight (KG) →
Result →
84
57
1
53
# | Rider | Weight (KG) |
---|---|---|
1 | VAN SCHIP Jan-Willem | 84 |
3 | PAPOK Siarhei | 76 |
4 | GROEN Ike | 70.5 |
6 | SAYAR Mustafa | 64 |
8 | HRISTOV Stefan Koychev | 57 |
15 | LAŠINIS Venantas | 69 |
16 | BALKAN Serkan | 64 |
17 | BALKAN Onur | 69 |
18 | AKDILEK Ahmet | 68 |
19 | MIRZA Yousif | 60 |
20 | SLOOF Jordi | 70 |
21 | SAMLI Feritcan | 75 |
22 | KÜÇÜKBAY Kemal | 70 |
23 | TALEN Jordi | 76 |
27 | IVASHKIN Anton | 73 |
28 | RAMANAU Raman | 68 |
31 | KAL Miraç | 72 |
40 | ÖRKEN Ahmet | 69 |
42 | DŽERVUS Darijus | 77 |
43 | ŠIŠKEVIČIUS Paulius | 70 |
46 | BAZHKOU Stanislau | 65 |
50 | SERGIS Kaspars | 75 |
53 | KAFES Turgut | 71 |