Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 46
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Džervus
1
77 kgvan Schip
2
84 kgPapok
4
76 kgÖrken
5
69 kgKal
6
72 kgRamanau
7
68 kgMirza
8
60 kgBalkan
10
69 kgGroen
11
70.5 kgKafes
17
71 kgAkdilek
19
68 kgBalkan
23
64 kgSayar
25
64 kgSergis
28
75 kgLašinis
29
69 kgHristov
30
57 kgŠiškevičius
34
70 kgTalen
36
76 kgSloof
37
70 kgBazhkou
39
65 kgKüçükbay
41
70 kgIvashkin
45
73 kgSamli
52
75 kg
1
77 kgvan Schip
2
84 kgPapok
4
76 kgÖrken
5
69 kgKal
6
72 kgRamanau
7
68 kgMirza
8
60 kgBalkan
10
69 kgGroen
11
70.5 kgKafes
17
71 kgAkdilek
19
68 kgBalkan
23
64 kgSayar
25
64 kgSergis
28
75 kgLašinis
29
69 kgHristov
30
57 kgŠiškevičius
34
70 kgTalen
36
76 kgSloof
37
70 kgBazhkou
39
65 kgKüçükbay
41
70 kgIvashkin
45
73 kgSamli
52
75 kg
Weight (KG) →
Result →
84
57
1
52
# | Rider | Weight (KG) |
---|---|---|
1 | DŽERVUS Darijus | 77 |
2 | VAN SCHIP Jan-Willem | 84 |
4 | PAPOK Siarhei | 76 |
5 | ÖRKEN Ahmet | 69 |
6 | KAL Miraç | 72 |
7 | RAMANAU Raman | 68 |
8 | MIRZA Yousif | 60 |
10 | BALKAN Onur | 69 |
11 | GROEN Ike | 70.5 |
17 | KAFES Turgut | 71 |
19 | AKDILEK Ahmet | 68 |
23 | BALKAN Serkan | 64 |
25 | SAYAR Mustafa | 64 |
28 | SERGIS Kaspars | 75 |
29 | LAŠINIS Venantas | 69 |
30 | HRISTOV Stefan Koychev | 57 |
34 | ŠIŠKEVIČIUS Paulius | 70 |
36 | TALEN Jordi | 76 |
37 | SLOOF Jordi | 70 |
39 | BAZHKOU Stanislau | 65 |
41 | KÜÇÜKBAY Kemal | 70 |
45 | IVASHKIN Anton | 73 |
52 | SAMLI Feritcan | 75 |