Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Groen
2
70.5 kgHristov
3
57 kgSayar
4
64 kgvan Schip
6
84 kgPapok
7
76 kgLašinis
12
69 kgBalkan
13
69 kgBalkan
14
64 kgSloof
18
70 kgAkdilek
19
68 kgÖrken
20
69 kgŠiškevičius
21
70 kgKüçükbay
22
70 kgRamanau
25
68 kgKal
26
72 kgDžervus
32
77 kgKafes
34
71 kgMirza
35
60 kgSamli
36
75 kgTalen
38
76 kgBazhkou
43
65 kgSergis
44
75 kg
2
70.5 kgHristov
3
57 kgSayar
4
64 kgvan Schip
6
84 kgPapok
7
76 kgLašinis
12
69 kgBalkan
13
69 kgBalkan
14
64 kgSloof
18
70 kgAkdilek
19
68 kgÖrken
20
69 kgŠiškevičius
21
70 kgKüçükbay
22
70 kgRamanau
25
68 kgKal
26
72 kgDžervus
32
77 kgKafes
34
71 kgMirza
35
60 kgSamli
36
75 kgTalen
38
76 kgBazhkou
43
65 kgSergis
44
75 kg
Weight (KG) →
Result →
84
57
2
44
# | Rider | Weight (KG) |
---|---|---|
2 | GROEN Ike | 70.5 |
3 | HRISTOV Stefan Koychev | 57 |
4 | SAYAR Mustafa | 64 |
6 | VAN SCHIP Jan-Willem | 84 |
7 | PAPOK Siarhei | 76 |
12 | LAŠINIS Venantas | 69 |
13 | BALKAN Onur | 69 |
14 | BALKAN Serkan | 64 |
18 | SLOOF Jordi | 70 |
19 | AKDILEK Ahmet | 68 |
20 | ÖRKEN Ahmet | 69 |
21 | ŠIŠKEVIČIUS Paulius | 70 |
22 | KÜÇÜKBAY Kemal | 70 |
25 | RAMANAU Raman | 68 |
26 | KAL Miraç | 72 |
32 | DŽERVUS Darijus | 77 |
34 | KAFES Turgut | 71 |
35 | MIRZA Yousif | 60 |
36 | SAMLI Feritcan | 75 |
38 | TALEN Jordi | 76 |
43 | BAZHKOU Stanislau | 65 |
44 | SERGIS Kaspars | 75 |