Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 11
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Groen
1
70.5 kgHristov
3
57 kgSayar
4
64 kgBalkan
6
69 kgPapok
7
76 kgŠiškevičius
9
70 kgÖrken
11
69 kgvan Schip
12
84 kgLašinis
14
69 kgBalkan
15
64 kgRamanau
21
68 kgKal
23
72 kgKüçükbay
24
70 kgSloof
25
70 kgSamli
30
75 kgDžervus
33
77 kgAkdilek
34
68 kgKafes
36
71 kgSergis
43
75 kgTalen
47
76 kgBazhkou
49
65 kgMirza
52
60 kg
1
70.5 kgHristov
3
57 kgSayar
4
64 kgBalkan
6
69 kgPapok
7
76 kgŠiškevičius
9
70 kgÖrken
11
69 kgvan Schip
12
84 kgLašinis
14
69 kgBalkan
15
64 kgRamanau
21
68 kgKal
23
72 kgKüçükbay
24
70 kgSloof
25
70 kgSamli
30
75 kgDžervus
33
77 kgAkdilek
34
68 kgKafes
36
71 kgSergis
43
75 kgTalen
47
76 kgBazhkou
49
65 kgMirza
52
60 kg
Weight (KG) →
Result →
84
57
1
52
# | Rider | Weight (KG) |
---|---|---|
1 | GROEN Ike | 70.5 |
3 | HRISTOV Stefan Koychev | 57 |
4 | SAYAR Mustafa | 64 |
6 | BALKAN Onur | 69 |
7 | PAPOK Siarhei | 76 |
9 | ŠIŠKEVIČIUS Paulius | 70 |
11 | ÖRKEN Ahmet | 69 |
12 | VAN SCHIP Jan-Willem | 84 |
14 | LAŠINIS Venantas | 69 |
15 | BALKAN Serkan | 64 |
21 | RAMANAU Raman | 68 |
23 | KAL Miraç | 72 |
24 | KÜÇÜKBAY Kemal | 70 |
25 | SLOOF Jordi | 70 |
30 | SAMLI Feritcan | 75 |
33 | DŽERVUS Darijus | 77 |
34 | AKDILEK Ahmet | 68 |
36 | KAFES Turgut | 71 |
43 | SERGIS Kaspars | 75 |
47 | TALEN Jordi | 76 |
49 | BAZHKOU Stanislau | 65 |
52 | MIRZA Yousif | 60 |