Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 11
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Mirza
2
60 kgRamanau
3
68 kgŠiškevičius
6
70 kgBalkan
7
64 kgSamli
8
75 kgDžervus
10
77 kgBalkan
11
69 kgPapok
12
76 kgGroen
16
70.5 kgÖrken
17
69 kgSayar
20
64 kgHristov
22
57 kgKal
24
72 kgAkdilek
25
68 kgKüçükbay
26
70 kgSloof
28
70 kgLašinis
29
69 kgBazhkou
30
65 kgTalen
35
76 kgSergis
38
75 kgKafes
45
71 kg
2
60 kgRamanau
3
68 kgŠiškevičius
6
70 kgBalkan
7
64 kgSamli
8
75 kgDžervus
10
77 kgBalkan
11
69 kgPapok
12
76 kgGroen
16
70.5 kgÖrken
17
69 kgSayar
20
64 kgHristov
22
57 kgKal
24
72 kgAkdilek
25
68 kgKüçükbay
26
70 kgSloof
28
70 kgLašinis
29
69 kgBazhkou
30
65 kgTalen
35
76 kgSergis
38
75 kgKafes
45
71 kg
Weight (KG) →
Result →
77
57
2
45
# | Rider | Weight (KG) |
---|---|---|
2 | MIRZA Yousif | 60 |
3 | RAMANAU Raman | 68 |
6 | ŠIŠKEVIČIUS Paulius | 70 |
7 | BALKAN Serkan | 64 |
8 | SAMLI Feritcan | 75 |
10 | DŽERVUS Darijus | 77 |
11 | BALKAN Onur | 69 |
12 | PAPOK Siarhei | 76 |
16 | GROEN Ike | 70.5 |
17 | ÖRKEN Ahmet | 69 |
20 | SAYAR Mustafa | 64 |
22 | HRISTOV Stefan Koychev | 57 |
24 | KAL Miraç | 72 |
25 | AKDILEK Ahmet | 68 |
26 | KÜÇÜKBAY Kemal | 70 |
28 | SLOOF Jordi | 70 |
29 | LAŠINIS Venantas | 69 |
30 | BAZHKOU Stanislau | 65 |
35 | TALEN Jordi | 76 |
38 | SERGIS Kaspars | 75 |
45 | KAFES Turgut | 71 |