Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.2 * weight - 60
This means that on average for every extra kilogram weight a rider loses 1.2 positions in the result.
Bazhkou
1
65 kgVorganov
2
65 kgBudyak
4
53 kgNikitin
5
61 kgCholakov
6
66 kgAlmeida
8
63 kgBalkan
12
64 kgLuchshenko
14
63 kgTsoy
15
73 kgKüçükbay
16
70 kgViel
21
72 kgPapok
23
76 kgTiryaki
27
67 kgTigrine
28
61 kgMihailov
33
68 kgAhiyevich
35
70 kgViejo
42
75 kgAndreev
44
63 kgKartal
54
70 kg
1
65 kgVorganov
2
65 kgBudyak
4
53 kgNikitin
5
61 kgCholakov
6
66 kgAlmeida
8
63 kgBalkan
12
64 kgLuchshenko
14
63 kgTsoy
15
73 kgKüçükbay
16
70 kgViel
21
72 kgPapok
23
76 kgTiryaki
27
67 kgTigrine
28
61 kgMihailov
33
68 kgAhiyevich
35
70 kgViejo
42
75 kgAndreev
44
63 kgKartal
54
70 kg
Weight (KG) →
Result →
76
53
1
54
# | Rider | Weight (KG) |
---|---|---|
1 | BAZHKOU Stanislau | 65 |
2 | VORGANOV Eduard | 65 |
4 | BUDYAK Anatoliy | 53 |
5 | NIKITIN Matvey | 61 |
6 | CHOLAKOV Stanimir | 66 |
8 | ALMEIDA João | 63 |
12 | BALKAN Serkan | 64 |
14 | LUCHSHENKO Sergey | 63 |
15 | TSOY Vladimir | 73 |
16 | KÜÇÜKBAY Kemal | 70 |
21 | VIEL Mattia | 72 |
23 | PAPOK Siarhei | 76 |
27 | TIRYAKI Oguzhan | 67 |
28 | TIGRINE Mehdi | 61 |
33 | MIHAILOV Mihail | 68 |
35 | AHIYEVICH Aleh | 70 |
42 | VIEJO José Daniel | 75 |
44 | ANDREEV Yordan | 63 |
54 | KARTAL Sinan | 70 |