Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.8 * weight - 32
This means that on average for every extra kilogram weight a rider loses 0.8 positions in the result.
Bazhkou
1
65 kgNikitin
2
61 kgBudyak
5
53 kgVorganov
6
65 kgCholakov
7
66 kgLuchshenko
9
63 kgTsoy
10
73 kgKüçükbay
11
70 kgAlmeida
14
63 kgAhiyevich
16
70 kgViel
20
72 kgTiryaki
22
67 kgPapok
24
76 kgTigrine
29
61 kgBalkan
32
64 kgViejo
36
75 kgMihailov
43
68 kgAndreev
50
63 kgKartal
52
70 kg
1
65 kgNikitin
2
61 kgBudyak
5
53 kgVorganov
6
65 kgCholakov
7
66 kgLuchshenko
9
63 kgTsoy
10
73 kgKüçükbay
11
70 kgAlmeida
14
63 kgAhiyevich
16
70 kgViel
20
72 kgTiryaki
22
67 kgPapok
24
76 kgTigrine
29
61 kgBalkan
32
64 kgViejo
36
75 kgMihailov
43
68 kgAndreev
50
63 kgKartal
52
70 kg
Weight (KG) →
Result →
76
53
1
52
# | Rider | Weight (KG) |
---|---|---|
1 | BAZHKOU Stanislau | 65 |
2 | NIKITIN Matvey | 61 |
5 | BUDYAK Anatoliy | 53 |
6 | VORGANOV Eduard | 65 |
7 | CHOLAKOV Stanimir | 66 |
9 | LUCHSHENKO Sergey | 63 |
10 | TSOY Vladimir | 73 |
11 | KÜÇÜKBAY Kemal | 70 |
14 | ALMEIDA João | 63 |
16 | AHIYEVICH Aleh | 70 |
20 | VIEL Mattia | 72 |
22 | TIRYAKI Oguzhan | 67 |
24 | PAPOK Siarhei | 76 |
29 | TIGRINE Mehdi | 61 |
32 | BALKAN Serkan | 64 |
36 | VIEJO José Daniel | 75 |
43 | MIHAILOV Mihail | 68 |
50 | ANDREEV Yordan | 63 |
52 | KARTAL Sinan | 70 |