Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 105
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Papok
1
76 kgViejo
2
75 kgViel
3
72 kgBazhkou
6
65 kgVorganov
10
65 kgKüçükbay
11
70 kgNikitin
12
61 kgTiryaki
13
67 kgTsoy
17
73 kgAlmeida
19
63 kgLuchshenko
21
63 kgBalkan
28
64 kgAndreev
31
63 kgTigrine
33
61 kgMihailov
38
68 kgCholakov
45
66 kgAhiyevich
49
70 kgBudyak
50
53 kgKartal
60
70 kg
1
76 kgViejo
2
75 kgViel
3
72 kgBazhkou
6
65 kgVorganov
10
65 kgKüçükbay
11
70 kgNikitin
12
61 kgTiryaki
13
67 kgTsoy
17
73 kgAlmeida
19
63 kgLuchshenko
21
63 kgBalkan
28
64 kgAndreev
31
63 kgTigrine
33
61 kgMihailov
38
68 kgCholakov
45
66 kgAhiyevich
49
70 kgBudyak
50
53 kgKartal
60
70 kg
Weight (KG) →
Result →
76
53
1
60
# | Rider | Weight (KG) |
---|---|---|
1 | PAPOK Siarhei | 76 |
2 | VIEJO José Daniel | 75 |
3 | VIEL Mattia | 72 |
6 | BAZHKOU Stanislau | 65 |
10 | VORGANOV Eduard | 65 |
11 | KÜÇÜKBAY Kemal | 70 |
12 | NIKITIN Matvey | 61 |
13 | TIRYAKI Oguzhan | 67 |
17 | TSOY Vladimir | 73 |
19 | ALMEIDA João | 63 |
21 | LUCHSHENKO Sergey | 63 |
28 | BALKAN Serkan | 64 |
31 | ANDREEV Yordan | 63 |
33 | TIGRINE Mehdi | 61 |
38 | MIHAILOV Mihail | 68 |
45 | CHOLAKOV Stanimir | 66 |
49 | AHIYEVICH Aleh | 70 |
50 | BUDYAK Anatoliy | 53 |
60 | KARTAL Sinan | 70 |