Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.2 * weight - 58
This means that on average for every extra kilogram weight a rider loses 1.2 positions in the result.
Almeida
1
63 kgVorganov
2
65 kgCholakov
4
66 kgBazhkou
6
65 kgBudyak
7
53 kgNikitin
9
61 kgBalkan
12
64 kgViel
14
72 kgKüçükbay
18
70 kgLuchshenko
19
63 kgPapok
21
76 kgMihailov
24
68 kgTsoy
28
73 kgTiryaki
32
67 kgKartal
39
70 kgTigrine
41
61 kgAndreev
44
63 kgAhiyevich
52
70 kgViejo
54
75 kg
1
63 kgVorganov
2
65 kgCholakov
4
66 kgBazhkou
6
65 kgBudyak
7
53 kgNikitin
9
61 kgBalkan
12
64 kgViel
14
72 kgKüçükbay
18
70 kgLuchshenko
19
63 kgPapok
21
76 kgMihailov
24
68 kgTsoy
28
73 kgTiryaki
32
67 kgKartal
39
70 kgTigrine
41
61 kgAndreev
44
63 kgAhiyevich
52
70 kgViejo
54
75 kg
Weight (KG) →
Result →
76
53
1
54
# | Rider | Weight (KG) |
---|---|---|
1 | ALMEIDA João | 63 |
2 | VORGANOV Eduard | 65 |
4 | CHOLAKOV Stanimir | 66 |
6 | BAZHKOU Stanislau | 65 |
7 | BUDYAK Anatoliy | 53 |
9 | NIKITIN Matvey | 61 |
12 | BALKAN Serkan | 64 |
14 | VIEL Mattia | 72 |
18 | KÜÇÜKBAY Kemal | 70 |
19 | LUCHSHENKO Sergey | 63 |
21 | PAPOK Siarhei | 76 |
24 | MIHAILOV Mihail | 68 |
28 | TSOY Vladimir | 73 |
32 | TIRYAKI Oguzhan | 67 |
39 | KARTAL Sinan | 70 |
41 | TIGRINE Mehdi | 61 |
44 | ANDREEV Yordan | 63 |
52 | AHIYEVICH Aleh | 70 |
54 | VIEJO José Daniel | 75 |