Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 17
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Tivani
1
67 kgVorganov
2
65 kgBalykin
3
68 kgBalkan
4
69 kgCholakov
5
66 kgÖrken
6
69 kgSamoilau
7
77 kgPozdnyakov
8
67 kgBayembayev
9
60 kgBazhkou
10
65 kgRaileanu
11
63 kgJurado
12
68 kgKaraliok
13
75 kgZana
16
65 kgZahiri
18
57 kgÖzgür
19
75 kgPapok
20
76 kgPanassenko
23
69 kgPronskiy
25
58 kgAzman
28
57 kgKüçükbay
29
70 kgStrokau
32
74 kg
1
67 kgVorganov
2
65 kgBalykin
3
68 kgBalkan
4
69 kgCholakov
5
66 kgÖrken
6
69 kgSamoilau
7
77 kgPozdnyakov
8
67 kgBayembayev
9
60 kgBazhkou
10
65 kgRaileanu
11
63 kgJurado
12
68 kgKaraliok
13
75 kgZana
16
65 kgZahiri
18
57 kgÖzgür
19
75 kgPapok
20
76 kgPanassenko
23
69 kgPronskiy
25
58 kgAzman
28
57 kgKüçükbay
29
70 kgStrokau
32
74 kg
Weight (KG) →
Result →
77
57
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | TIVANI German Nicolás | 67 |
2 | VORGANOV Eduard | 65 |
3 | BALYKIN Ivan | 68 |
4 | BALKAN Onur | 69 |
5 | CHOLAKOV Stanimir | 66 |
6 | ÖRKEN Ahmet | 69 |
7 | SAMOILAU Branislau | 77 |
8 | POZDNYAKOV Kirill | 67 |
9 | BAYEMBAYEV Olzhas | 60 |
10 | BAZHKOU Stanislau | 65 |
11 | RAILEANU Cristian | 63 |
12 | JURADO Christofer Robín | 68 |
13 | KARALIOK Yauheni | 75 |
16 | ZANA Filippo | 65 |
18 | ZAHIRI Abderrahim | 57 |
19 | ÖZGÜR Batuhan | 75 |
20 | PAPOK Siarhei | 76 |
23 | PANASSENKO Nikita | 69 |
25 | PRONSKIY Vadim | 58 |
28 | AZMAN Muhamad Zawawi | 57 |
29 | KÜÇÜKBAY Kemal | 70 |
32 | STROKAU Vasili | 74 |