Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 8
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Vorganov
1
65 kgTivani
2
67 kgBalykin
3
68 kgSamoilau
4
77 kgCholakov
5
66 kgPozdnyakov
6
67 kgBalkan
7
69 kgBayembayev
8
60 kgBazhkou
9
65 kgZana
10
65 kgJurado
11
68 kgRaileanu
13
63 kgÖrken
14
69 kgÖzgür
15
75 kgPanassenko
17
69 kgZahiri
18
57 kgPronskiy
19
58 kgKüçükbay
24
70 kgKaraliok
26
75 kg
1
65 kgTivani
2
67 kgBalykin
3
68 kgSamoilau
4
77 kgCholakov
5
66 kgPozdnyakov
6
67 kgBalkan
7
69 kgBayembayev
8
60 kgBazhkou
9
65 kgZana
10
65 kgJurado
11
68 kgRaileanu
13
63 kgÖrken
14
69 kgÖzgür
15
75 kgPanassenko
17
69 kgZahiri
18
57 kgPronskiy
19
58 kgKüçükbay
24
70 kgKaraliok
26
75 kg
Weight (KG) →
Result →
77
57
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | VORGANOV Eduard | 65 |
2 | TIVANI German Nicolás | 67 |
3 | BALYKIN Ivan | 68 |
4 | SAMOILAU Branislau | 77 |
5 | CHOLAKOV Stanimir | 66 |
6 | POZDNYAKOV Kirill | 67 |
7 | BALKAN Onur | 69 |
8 | BAYEMBAYEV Olzhas | 60 |
9 | BAZHKOU Stanislau | 65 |
10 | ZANA Filippo | 65 |
11 | JURADO Christofer Robín | 68 |
13 | RAILEANU Cristian | 63 |
14 | ÖRKEN Ahmet | 69 |
15 | ÖZGÜR Batuhan | 75 |
17 | PANASSENKO Nikita | 69 |
18 | ZAHIRI Abderrahim | 57 |
19 | PRONSKIY Vadim | 58 |
24 | KÜÇÜKBAY Kemal | 70 |
26 | KARALIOK Yauheni | 75 |