Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 19
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Koning
1
77 kgHaddi
3
63 kgvan Engelen
6
51 kgAït El Abdia
7
66 kgSamoilau
8
77 kgHoller
13
58 kgVorganov
15
65 kgBichlmann
16
72 kgAsadov
18
77 kgLagab
20
63 kgManakov
23
77 kgÖzgür
26
75 kgKüçükbay
36
70 kgSayar
38
64 kgErshov
39
70 kgBalkan
43
64 kgKlisurić
44
70 kgChtioui
46
82 kgJabrayilov
47
52 kgIvashkin
48
73 kgKomin
49
63 kgSteinacher
53
72 kg
1
77 kgHaddi
3
63 kgvan Engelen
6
51 kgAït El Abdia
7
66 kgSamoilau
8
77 kgHoller
13
58 kgVorganov
15
65 kgBichlmann
16
72 kgAsadov
18
77 kgLagab
20
63 kgManakov
23
77 kgÖzgür
26
75 kgKüçükbay
36
70 kgSayar
38
64 kgErshov
39
70 kgBalkan
43
64 kgKlisurić
44
70 kgChtioui
46
82 kgJabrayilov
47
52 kgIvashkin
48
73 kgKomin
49
63 kgSteinacher
53
72 kg
Weight (KG) →
Result →
82
51
1
53
# | Rider | Weight (KG) |
---|---|---|
1 | KONING Peter | 77 |
3 | HADDI Soufiane | 63 |
6 | VAN ENGELEN Adne | 51 |
7 | AÏT EL ABDIA Anass | 66 |
8 | SAMOILAU Branislau | 77 |
13 | HOLLER Nikodemus | 58 |
15 | VORGANOV Eduard | 65 |
16 | BICHLMANN Daniel | 72 |
18 | ASADOV Elchin | 77 |
20 | LAGAB Azzedine | 63 |
23 | MANAKOV Victor | 77 |
26 | ÖZGÜR Batuhan | 75 |
36 | KÜÇÜKBAY Kemal | 70 |
38 | SAYAR Mustafa | 64 |
39 | ERSHOV Artur | 70 |
43 | BALKAN Serkan | 64 |
44 | KLISURIĆ Stevan | 70 |
46 | CHTIOUI Rafaâ | 82 |
47 | JABRAYILOV Samir | 52 |
48 | IVASHKIN Anton | 73 |
49 | KOMIN Aleksandr | 63 |
53 | STEINACHER Cyrill | 72 |