Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 37
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Örken
1
69 kgÖzgür
3
75 kgBalkan
4
69 kgCarstensen
9
69 kgJabrayilov
10
52 kgAït El Abdia
12
66 kgSamoilau
13
77 kgBichlmann
15
72 kgKlisurić
16
70 kgĐurić
20
78 kgSayar
24
64 kgVorganov
25
65 kgWolf
27
85 kgAsadov
29
77 kgChtioui
30
82 kgHaddi
32
63 kgLagab
33
63 kgvan Engelen
34
51 kgKoning
36
77 kgTigrine
38
61 kgIvashkin
42
73 kgYavuz
49
65 kgTaskan
53
65 kg
1
69 kgÖzgür
3
75 kgBalkan
4
69 kgCarstensen
9
69 kgJabrayilov
10
52 kgAït El Abdia
12
66 kgSamoilau
13
77 kgBichlmann
15
72 kgKlisurić
16
70 kgĐurić
20
78 kgSayar
24
64 kgVorganov
25
65 kgWolf
27
85 kgAsadov
29
77 kgChtioui
30
82 kgHaddi
32
63 kgLagab
33
63 kgvan Engelen
34
51 kgKoning
36
77 kgTigrine
38
61 kgIvashkin
42
73 kgYavuz
49
65 kgTaskan
53
65 kg
Weight (KG) →
Result →
85
51
1
53
# | Rider | Weight (KG) |
---|---|---|
1 | ÖRKEN Ahmet | 69 |
3 | ÖZGÜR Batuhan | 75 |
4 | BALKAN Onur | 69 |
9 | CARSTENSEN Lucas | 69 |
10 | JABRAYILOV Samir | 52 |
12 | AÏT EL ABDIA Anass | 66 |
13 | SAMOILAU Branislau | 77 |
15 | BICHLMANN Daniel | 72 |
16 | KLISURIĆ Stevan | 70 |
20 | ĐURIĆ Đorđe | 78 |
24 | SAYAR Mustafa | 64 |
25 | VORGANOV Eduard | 65 |
27 | WOLF Justin | 85 |
29 | ASADOV Elchin | 77 |
30 | CHTIOUI Rafaâ | 82 |
32 | HADDI Soufiane | 63 |
33 | LAGAB Azzedine | 63 |
34 | VAN ENGELEN Adne | 51 |
36 | KONING Peter | 77 |
38 | TIGRINE Mehdi | 61 |
42 | IVASHKIN Anton | 73 |
49 | YAVUZ Ozan | 65 |
53 | TASKAN Oguzhan | 65 |