Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 68
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Ganjkhanlou
1
72 kgBalykin
2
68 kgÖzgür
3
75 kgMuzychkin
4
76 kgBalkan
5
69 kgTiryaki
6
67 kgKaraliok
9
75 kgIvashkin
10
73 kgÖrken
14
69 kgChtioui
15
82 kgShumov
16
65 kgSteinacher
24
72 kgSohrabi
27
69 kgSafarzadeh
28
66 kgRaileanu
30
63 kgAriyan
32
70 kgNobel
35
78 kgStrokau
37
74 kgKüçükbay
38
70 kgSayar
41
64 kgSamli
42
75 kgSuter
55
70 kgRezvani
56
68 kg
1
72 kgBalykin
2
68 kgÖzgür
3
75 kgMuzychkin
4
76 kgBalkan
5
69 kgTiryaki
6
67 kgKaraliok
9
75 kgIvashkin
10
73 kgÖrken
14
69 kgChtioui
15
82 kgShumov
16
65 kgSteinacher
24
72 kgSohrabi
27
69 kgSafarzadeh
28
66 kgRaileanu
30
63 kgAriyan
32
70 kgNobel
35
78 kgStrokau
37
74 kgKüçükbay
38
70 kgSayar
41
64 kgSamli
42
75 kgSuter
55
70 kgRezvani
56
68 kg
Weight (KG) →
Result →
82
63
1
56
# | Rider | Weight (KG) |
---|---|---|
1 | GANJKHANLOU Mohammad | 72 |
2 | BALYKIN Ivan | 68 |
3 | ÖZGÜR Batuhan | 75 |
4 | MUZYCHKIN Anton | 76 |
5 | BALKAN Onur | 69 |
6 | TIRYAKI Oguzhan | 67 |
9 | KARALIOK Yauheni | 75 |
10 | IVASHKIN Anton | 73 |
14 | ÖRKEN Ahmet | 69 |
15 | CHTIOUI Rafaâ | 82 |
16 | SHUMOV Nikolai | 65 |
24 | STEINACHER Cyrill | 72 |
27 | SOHRABI Mehdi | 69 |
28 | SAFARZADEH Saeid | 66 |
30 | RAILEANU Cristian | 63 |
32 | ARIYAN Behnam | 70 |
35 | NOBEL Rick | 78 |
37 | STROKAU Vasili | 74 |
38 | KÜÇÜKBAY Kemal | 70 |
41 | SAYAR Mustafa | 64 |
42 | SAMLI Feritcan | 75 |
55 | SUTER Gaël | 70 |
56 | REZVANI Morteza | 68 |