Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 75
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Domínguez
1
72 kgRollin
2
83 kgPagliarini
3
68 kgHincapie
5
83 kgLouder
8
73 kgPate
10
73 kgHelminen
11
74 kgChadwick
18
75 kgMenzies
19
86 kgCañada
21
65 kgWyss
22
65 kgLagutin
23
68 kgFriedman
24
82 kgVitoria
25
74 kgFrattini
29
63 kgCozza
30
70 kgRangel
39
63 kgFrischkorn
40
68 kg
1
72 kgRollin
2
83 kgPagliarini
3
68 kgHincapie
5
83 kgLouder
8
73 kgPate
10
73 kgHelminen
11
74 kgChadwick
18
75 kgMenzies
19
86 kgCañada
21
65 kgWyss
22
65 kgLagutin
23
68 kgFriedman
24
82 kgVitoria
25
74 kgFrattini
29
63 kgCozza
30
70 kgRangel
39
63 kgFrischkorn
40
68 kg
Weight (KG) →
Result →
86
63
1
40
# | Rider | Weight (KG) |
---|---|---|
1 | DOMÍNGUEZ Iván | 72 |
2 | ROLLIN Dominique | 83 |
3 | PAGLIARINI Luciano André | 68 |
5 | HINCAPIE George | 83 |
8 | LOUDER Jeff | 73 |
10 | PATE Danny | 73 |
11 | HELMINEN Matti | 74 |
18 | CHADWICK Glen Alan | 75 |
19 | MENZIES Karl | 86 |
21 | CAÑADA David | 65 |
22 | WYSS Danilo | 65 |
23 | LAGUTIN Sergey | 68 |
24 | FRIEDMAN Michael | 82 |
25 | VITORIA David | 74 |
29 | FRATTINI Davide | 63 |
30 | COZZA Steven | 70 |
39 | RANGEL Hector Hugo | 63 |
40 | FRISCHKORN William | 68 |