Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 16
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Aldape
1
62 kgSørensen
2
64 kgWilson
3
72 kgBak
4
76 kgBarry
6
72 kgMcCartney
7
70 kgJones
8
64 kgFrank
10
64 kgZeits
11
73 kgRast
12
80 kgPate
13
73 kgCataldo
14
64 kgBrajkovič
15
60 kgSørensen
16
71 kgVeilleux
17
75 kgLouder
18
73 kgParisien
19
64 kgRobert
21
68 kgLeipheimer
22
62 kg
1
62 kgSørensen
2
64 kgWilson
3
72 kgBak
4
76 kgBarry
6
72 kgMcCartney
7
70 kgJones
8
64 kgFrank
10
64 kgZeits
11
73 kgRast
12
80 kgPate
13
73 kgCataldo
14
64 kgBrajkovič
15
60 kgSørensen
16
71 kgVeilleux
17
75 kgLouder
18
73 kgParisien
19
64 kgRobert
21
68 kgLeipheimer
22
62 kg
Weight (KG) →
Result →
80
60
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | ALDAPE Moises Antonio | 62 |
2 | SØRENSEN Chris Anker | 64 |
3 | WILSON Matthew | 72 |
4 | BAK Lars Ytting | 76 |
6 | BARRY Michael | 72 |
7 | MCCARTNEY Jason | 70 |
8 | JONES Chris | 64 |
10 | FRANK Mathias | 64 |
11 | ZEITS Andrey | 73 |
12 | RAST Grégory | 80 |
13 | PATE Danny | 73 |
14 | CATALDO Dario | 64 |
15 | BRAJKOVIČ Janez | 60 |
16 | SØRENSEN Nicki | 71 |
17 | VEILLEUX David | 75 |
18 | LOUDER Jeff | 73 |
19 | PARISIEN François | 64 |
21 | ROBERT Fréderique | 68 |
22 | LEIPHEIMER Levi | 62 |