Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 47
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Furlan
2
72 kgMcEvoy
3
67 kgCamaño
5
68 kgBiałobłocki
6
79 kgBommel
8
75 kgKelderman
10
65 kgRasmussen
11
58 kgBauer
15
74 kgReihs
18
75 kgSchoonbroodt
21
78 kgKvist
23
68 kgSerov
24
77 kgvan der Lijke
25
61 kgMcCarthy
28
63 kgGroen
40
70.5 kgWilmann
41
69 kgLaengen
43
79 kgAnderson
48
68 kgJørgensen
55
60 kgBreen
56
74 kgWetterhall
58
70 kgAsselman
80
69 kg
2
72 kgMcEvoy
3
67 kgCamaño
5
68 kgBiałobłocki
6
79 kgBommel
8
75 kgKelderman
10
65 kgRasmussen
11
58 kgBauer
15
74 kgReihs
18
75 kgSchoonbroodt
21
78 kgKvist
23
68 kgSerov
24
77 kgvan der Lijke
25
61 kgMcCarthy
28
63 kgGroen
40
70.5 kgWilmann
41
69 kgLaengen
43
79 kgAnderson
48
68 kgJørgensen
55
60 kgBreen
56
74 kgWetterhall
58
70 kgAsselman
80
69 kg
Weight (KG) →
Result →
79
58
2
80
# | Rider | Weight (KG) |
---|---|---|
2 | FURLAN Angelo | 72 |
3 | MCEVOY Jonathan | 67 |
5 | CAMAÑO Iker | 68 |
6 | BIAŁOBŁOCKI Marcin | 79 |
8 | BOMMEL Henning | 75 |
10 | KELDERMAN Wilco | 65 |
11 | RASMUSSEN Michael | 58 |
15 | BAUER Jack | 74 |
18 | REIHS Michael | 75 |
21 | SCHOONBROODT Bob | 78 |
23 | KVIST Thomas Vedel | 68 |
24 | SEROV Alexander | 77 |
25 | VAN DER LIJKE Nick | 61 |
28 | MCCARTHY Jay | 63 |
40 | GROEN Ike | 70.5 |
41 | WILMANN Frederik | 69 |
43 | LAENGEN Vegard Stake | 79 |
48 | ANDERSON Jack | 68 |
55 | JØRGENSEN René | 60 |
56 | BREEN Vegard | 74 |
58 | WETTERHALL Alexander | 70 |
80 | ASSELMAN Jesper | 69 |