Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 33
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Kristoff
1
78 kgBoasson Hagen
2
75 kgHinault
3
63 kgBos
4
77 kgSbaragli
5
74 kgVan Asbroeck
6
72 kgDrucker
7
75 kgVandousselaere
8
71 kgLasca
9
65 kgŠiškevičius
10
80 kgSimon
11
65 kgMartias
12
71 kgMollema
14
64 kgDe Vreese
15
78 kgTxurruka
17
58 kgReihs
18
75 kgLequatre
19
64 kg
1
78 kgBoasson Hagen
2
75 kgHinault
3
63 kgBos
4
77 kgSbaragli
5
74 kgVan Asbroeck
6
72 kgDrucker
7
75 kgVandousselaere
8
71 kgLasca
9
65 kgŠiškevičius
10
80 kgSimon
11
65 kgMartias
12
71 kgMollema
14
64 kgDe Vreese
15
78 kgTxurruka
17
58 kgReihs
18
75 kgLequatre
19
64 kg
Weight (KG) →
Result →
80
58
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | KRISTOFF Alexander | 78 |
2 | BOASSON HAGEN Edvald | 75 |
3 | HINAULT Sébastien | 63 |
4 | BOS Theo | 77 |
5 | SBARAGLI Kristian | 74 |
6 | VAN ASBROECK Tom | 72 |
7 | DRUCKER Jempy | 75 |
8 | VANDOUSSELAERE Sven | 71 |
9 | LASCA Francesco | 65 |
10 | ŠIŠKEVIČIUS Evaldas | 80 |
11 | SIMON Julien | 65 |
12 | MARTIAS Rony | 71 |
14 | MOLLEMA Bauke | 64 |
15 | DE VREESE Laurens | 78 |
17 | TXURRUKA Amets | 58 |
18 | REIHS Michael | 75 |
19 | LEQUATRE Geoffroy | 64 |