Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 21
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Hansen
1
60 kgBilbao
2
60 kgBystrøm
4
73 kgBeltrán
5
59 kgFernández
6
60 kgEiking
7
75 kgSkjerping
8
71 kgLunke
9
69 kgLietaer
10
70 kgReichenbach
11
64 kgSprengers
12
60 kgEnger
13
69 kgSchelling
14
61 kgVan Asbroeck
15
72 kgWaeytens
18
67 kgHaller
20
72 kgJansen
21
83 kgErshov
23
70 kgJensen
24
67 kgAasvold
25
61 kgBoev
26
74 kgFraile
29
72 kg
1
60 kgBilbao
2
60 kgBystrøm
4
73 kgBeltrán
5
59 kgFernández
6
60 kgEiking
7
75 kgSkjerping
8
71 kgLunke
9
69 kgLietaer
10
70 kgReichenbach
11
64 kgSprengers
12
60 kgEnger
13
69 kgSchelling
14
61 kgVan Asbroeck
15
72 kgWaeytens
18
67 kgHaller
20
72 kgJansen
21
83 kgErshov
23
70 kgJensen
24
67 kgAasvold
25
61 kgBoev
26
74 kgFraile
29
72 kg
Weight (KG) →
Result →
83
59
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | HANSEN Jesper | 60 |
2 | BILBAO Pello | 60 |
4 | BYSTRØM Sven Erik | 73 |
5 | BELTRÁN Edward | 59 |
6 | FERNÁNDEZ Rubén | 60 |
7 | EIKING Odd Christian | 75 |
8 | SKJERPING Kristoffer | 71 |
9 | LUNKE Sindre | 69 |
10 | LIETAER Eliot | 70 |
11 | REICHENBACH Sébastien | 64 |
12 | SPRENGERS Thomas | 60 |
13 | ENGER Sondre Holst | 69 |
14 | SCHELLING Patrick | 61 |
15 | VAN ASBROECK Tom | 72 |
18 | WAEYTENS Zico | 67 |
20 | HALLER Marco | 72 |
21 | JANSEN Amund Grøndahl | 83 |
23 | ERSHOV Artur | 70 |
24 | JENSEN August | 67 |
25 | AASVOLD Kristian | 61 |
26 | BOEV Igor | 74 |
29 | FRAILE Omar | 72 |