Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 27
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Pedersen
1
70 kgMas
2
69 kgPöstlberger
4
70 kgWeening
5
68 kgBenedetti
6
63 kgArmée
7
72 kgEiking
9
75 kgFerrari
11
64 kgKrizek
12
74 kgLietaer
13
70 kgMendes
14
64 kgEnger
15
69 kgLammertink
16
68 kgHagen
17
65 kgTolhoek
18
61 kgJansen
19
83 kgWegmann
20
60 kgDockx
21
64 kgJanse van Rensburg
22
74 kgMartens
24
69 kgDe Negri
25
61 kgWetterhall
27
70 kgCampenaerts
28
68 kg
1
70 kgMas
2
69 kgPöstlberger
4
70 kgWeening
5
68 kgBenedetti
6
63 kgArmée
7
72 kgEiking
9
75 kgFerrari
11
64 kgKrizek
12
74 kgLietaer
13
70 kgMendes
14
64 kgEnger
15
69 kgLammertink
16
68 kgHagen
17
65 kgTolhoek
18
61 kgJansen
19
83 kgWegmann
20
60 kgDockx
21
64 kgJanse van Rensburg
22
74 kgMartens
24
69 kgDe Negri
25
61 kgWetterhall
27
70 kgCampenaerts
28
68 kg
Weight (KG) →
Result →
83
60
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | PEDERSEN Mads | 70 |
2 | MAS Lluís | 69 |
4 | PÖSTLBERGER Lukas | 70 |
5 | WEENING Pieter | 68 |
6 | BENEDETTI Cesare | 63 |
7 | ARMÉE Sander | 72 |
9 | EIKING Odd Christian | 75 |
11 | FERRARI Fabricio | 64 |
12 | KRIZEK Matthias | 74 |
13 | LIETAER Eliot | 70 |
14 | MENDES José | 64 |
15 | ENGER Sondre Holst | 69 |
16 | LAMMERTINK Steven | 68 |
17 | HAGEN Carl Fredrik | 65 |
18 | TOLHOEK Antwan | 61 |
19 | JANSEN Amund Grøndahl | 83 |
20 | WEGMANN Fabian | 60 |
21 | DOCKX Gert | 64 |
22 | JANSE VAN RENSBURG Reinardt | 74 |
24 | MARTENS Paul | 69 |
25 | DE NEGRI Pier Paolo | 61 |
27 | WETTERHALL Alexander | 70 |
28 | CAMPENAERTS Victor | 68 |