Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 17
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Van Hecke
1
69 kgPower
2
68 kgArmée
3
72 kgEikeland
4
68 kgVillegas
6
73 kgBoasson Hagen
7
75 kgWeening
8
68 kgVervaeke
9
68 kgOrjuela
10
60 kgPeyskens
11
69 kgGerrans
12
62 kgMolina
13
57 kgVangstad
15
70 kgvan Aert
16
78 kgMas
17
69 kgReguigui
18
69 kgWarnier
19
71 kgBevin
21
75 kgDelfosse
22
73 kgAlbasini
23
65 kgKurek
25
80 kgRobeet
28
75 kg
1
69 kgPower
2
68 kgArmée
3
72 kgEikeland
4
68 kgVillegas
6
73 kgBoasson Hagen
7
75 kgWeening
8
68 kgVervaeke
9
68 kgOrjuela
10
60 kgPeyskens
11
69 kgGerrans
12
62 kgMolina
13
57 kgVangstad
15
70 kgvan Aert
16
78 kgMas
17
69 kgReguigui
18
69 kgWarnier
19
71 kgBevin
21
75 kgDelfosse
22
73 kgAlbasini
23
65 kgKurek
25
80 kgRobeet
28
75 kg
Weight (KG) →
Result →
80
57
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | VAN HECKE Preben | 69 |
2 | POWER Robert | 68 |
3 | ARMÉE Sander | 72 |
4 | EIKELAND Ken Levi | 68 |
6 | VILLEGAS Juan Pablo | 73 |
7 | BOASSON HAGEN Edvald | 75 |
8 | WEENING Pieter | 68 |
9 | VERVAEKE Louis | 68 |
10 | ORJUELA Fernando | 60 |
11 | PEYSKENS Dimitri | 69 |
12 | GERRANS Simon | 62 |
13 | MOLINA Antonio | 57 |
15 | VANGSTAD Andreas | 70 |
16 | VAN AERT Wout | 78 |
17 | MAS Lluís | 69 |
18 | REGUIGUI Youcef | 69 |
19 | WARNIER Antoine | 71 |
21 | BEVIN Patrick | 75 |
22 | DELFOSSE Sébastien | 73 |
23 | ALBASINI Michael | 65 |
25 | KUREK Adrian | 80 |
28 | ROBEET Ludovic | 75 |