Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 30
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Boasson Hagen
1
75 kgVan der Sande
2
67 kgGerrans
3
62 kgJensen
4
67 kgArmée
5
72 kgDaniel
6
74 kgMeijers
7
68 kgGuldhammer
8
66 kgGallopin
9
69 kgSchultz
10
68 kgDelaplace
12
65 kgVillegas
13
73 kgVan Hecke
14
69 kgFonseca
15
56 kgBol
16
71 kgHagen
18
65 kgPower
19
68 kg
1
75 kgVan der Sande
2
67 kgGerrans
3
62 kgJensen
4
67 kgArmée
5
72 kgDaniel
6
74 kgMeijers
7
68 kgGuldhammer
8
66 kgGallopin
9
69 kgSchultz
10
68 kgDelaplace
12
65 kgVillegas
13
73 kgVan Hecke
14
69 kgFonseca
15
56 kgBol
16
71 kgHagen
18
65 kgPower
19
68 kg
Weight (KG) →
Result →
75
56
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | BOASSON HAGEN Edvald | 75 |
2 | VAN DER SANDE Tosh | 67 |
3 | GERRANS Simon | 62 |
4 | JENSEN August | 67 |
5 | ARMÉE Sander | 72 |
6 | DANIEL Maxime | 74 |
7 | MEIJERS Jeroen | 68 |
8 | GULDHAMMER Rasmus | 66 |
9 | GALLOPIN Tony | 69 |
10 | SCHULTZ Nick | 68 |
12 | DELAPLACE Anthony | 65 |
13 | VILLEGAS Juan Pablo | 73 |
14 | VAN HECKE Preben | 69 |
15 | FONSECA Armindo | 56 |
16 | BOL Jetse | 71 |
18 | HAGEN Carl Fredrik | 65 |
19 | POWER Robert | 68 |