Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 3
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
López
2
68 kgHagen
3
65 kgVangstad
4
70 kgPrades
5
63 kgKamp
7
74 kgWarbasse
8
67 kgVan Gestel
9
74 kgVeyhe
10
77 kgRovny
11
62 kgBaugnies
12
69 kgMas
13
69 kgSchultz
14
68 kgLigthart
15
72 kgde Greef
16
65 kgRuijgh
17
64 kgTræen
18
63 kgWarnier
19
71 kgKudus
20
58 kgDibben
21
78 kgMeijers
22
68 kgRoosen
23
78 kgBoasson Hagen
24
75 kgIrisarri
25
66 kgMartens
26
69 kg
2
68 kgHagen
3
65 kgVangstad
4
70 kgPrades
5
63 kgKamp
7
74 kgWarbasse
8
67 kgVan Gestel
9
74 kgVeyhe
10
77 kgRovny
11
62 kgBaugnies
12
69 kgMas
13
69 kgSchultz
14
68 kgLigthart
15
72 kgde Greef
16
65 kgRuijgh
17
64 kgTræen
18
63 kgWarnier
19
71 kgKudus
20
58 kgDibben
21
78 kgMeijers
22
68 kgRoosen
23
78 kgBoasson Hagen
24
75 kgIrisarri
25
66 kgMartens
26
69 kg
Weight (KG) →
Result →
78
58
2
26
# | Rider | Weight (KG) |
---|---|---|
2 | LÓPEZ David | 68 |
3 | HAGEN Carl Fredrik | 65 |
4 | VANGSTAD Andreas | 70 |
5 | PRADES Eduard | 63 |
7 | KAMP Alexander | 74 |
8 | WARBASSE Larry | 67 |
9 | VAN GESTEL Dries | 74 |
10 | VEYHE Torkil | 77 |
11 | ROVNY Ivan | 62 |
12 | BAUGNIES Jérôme | 69 |
13 | MAS Lluís | 69 |
14 | SCHULTZ Nick | 68 |
15 | LIGTHART Pim | 72 |
16 | DE GREEF Robbert | 65 |
17 | RUIJGH Rob | 64 |
18 | TRÆEN Torstein | 63 |
19 | WARNIER Antoine | 71 |
20 | KUDUS Merhawi | 58 |
21 | DIBBEN Jonathan | 78 |
22 | MEIJERS Jeroen | 68 |
23 | ROOSEN Timo | 78 |
24 | BOASSON HAGEN Edvald | 75 |
25 | IRISARRI Jon | 66 |
26 | MARTENS Paul | 69 |