Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 17
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Hayter
1
70 kgSchelling
2
66 kgTræen
3
63 kgSkjelmose
4
65 kgShaw
5
63 kgGanna
6
83 kgTeunissen
7
73 kgAasvold
8
61 kgHoelgaard
9
74 kgMertens
10
67 kgEriksson
11
64 kgBennett
12
58 kgCombaud
13
63 kgBystrøm
14
73 kgCharmig
15
66 kgLeknessund
16
72 kgSessler
17
58 kgBerlin
18
57 kgJensen
19
75 kg
1
70 kgSchelling
2
66 kgTræen
3
63 kgSkjelmose
4
65 kgShaw
5
63 kgGanna
6
83 kgTeunissen
7
73 kgAasvold
8
61 kgHoelgaard
9
74 kgMertens
10
67 kgEriksson
11
64 kgBennett
12
58 kgCombaud
13
63 kgBystrøm
14
73 kgCharmig
15
66 kgLeknessund
16
72 kgSessler
17
58 kgBerlin
18
57 kgJensen
19
75 kg
Weight (KG) →
Result →
83
57
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | HAYTER Ethan | 70 |
2 | SCHELLING Ide | 66 |
3 | TRÆEN Torstein | 63 |
4 | SKJELMOSE Mattias | 65 |
5 | SHAW James | 63 |
6 | GANNA Filippo | 83 |
7 | TEUNISSEN Mike | 73 |
8 | AASVOLD Kristian | 61 |
9 | HOELGAARD Markus | 74 |
10 | MERTENS Julian | 67 |
11 | ERIKSSON Lucas | 64 |
12 | BENNETT George | 58 |
13 | COMBAUD Romain | 63 |
14 | BYSTRØM Sven Erik | 73 |
15 | CHARMIG Anthon | 66 |
16 | LEKNESSUND Andreas | 72 |
17 | SESSLER Nícolas | 58 |
18 | BERLIN Antoine | 57 |
19 | JENSEN Frederik Irgens | 75 |