Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 3
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Evenepoel
1
61 kgJohannessen
2
62 kgPrades
3
63 kgPlapp
4
72 kgHayter
5
70 kgChaves
6
55 kgBrambilla
7
57 kgTeunissen
8
73 kgUijtdebroeks
9
68 kgLunder
10
78 kgHuys
11
61 kgGeoghegan Hart
12
65 kgAasvold
13
61 kgBonneu
14
62 kgReynders
15
76 kgHagen
16
65 kgVine
18
69 kg
1
61 kgJohannessen
2
62 kgPrades
3
63 kgPlapp
4
72 kgHayter
5
70 kgChaves
6
55 kgBrambilla
7
57 kgTeunissen
8
73 kgUijtdebroeks
9
68 kgLunder
10
78 kgHuys
11
61 kgGeoghegan Hart
12
65 kgAasvold
13
61 kgBonneu
14
62 kgReynders
15
76 kgHagen
16
65 kgVine
18
69 kg
Weight (KG) →
Result →
78
55
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | EVENEPOEL Remco | 61 |
2 | JOHANNESSEN Tobias Halland | 62 |
3 | PRADES Eduard | 63 |
4 | PLAPP Luke | 72 |
5 | HAYTER Ethan | 70 |
6 | CHAVES Esteban | 55 |
7 | BRAMBILLA Gianluca | 57 |
8 | TEUNISSEN Mike | 73 |
9 | UIJTDEBROEKS Cian | 68 |
10 | LUNDER Eirik | 78 |
11 | HUYS Laurens | 61 |
12 | GEOGHEGAN HART Tao | 65 |
13 | AASVOLD Kristian | 61 |
14 | BONNEU Kamiel | 62 |
15 | REYNDERS Jens | 76 |
16 | HAGEN Carl Fredrik | 65 |
18 | VINE Jay | 69 |