Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 2
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Sheffield
1
73 kgNys
2
64 kgJohannessen
3
62 kgKamp
4
74 kgTulett
6
56 kgTeunissen
7
73 kgAndresen
8
69 kgValter
9
65 kgMeeus
10
80 kgVacek
11
75 kgBrenner
12
59 kgGhys
13
72 kgHerregodts
14
70 kgvan Dijke
15
74 kgvan den Berg
16
73 kgZwiehoff
17
61 kgvan der Lijke
18
61 kgMilesi
19
70 kgRutsch
20
82 kgJensen
21
67 kgEiking
22
75 kgSteinhauser
23
65 kgDrege
24
78 kg
1
73 kgNys
2
64 kgJohannessen
3
62 kgKamp
4
74 kgTulett
6
56 kgTeunissen
7
73 kgAndresen
8
69 kgValter
9
65 kgMeeus
10
80 kgVacek
11
75 kgBrenner
12
59 kgGhys
13
72 kgHerregodts
14
70 kgvan Dijke
15
74 kgvan den Berg
16
73 kgZwiehoff
17
61 kgvan der Lijke
18
61 kgMilesi
19
70 kgRutsch
20
82 kgJensen
21
67 kgEiking
22
75 kgSteinhauser
23
65 kgDrege
24
78 kg
Weight (KG) →
Result →
82
56
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | SHEFFIELD Magnus | 73 |
2 | NYS Thibau | 64 |
3 | JOHANNESSEN Tobias Halland | 62 |
4 | KAMP Alexander | 74 |
6 | TULETT Ben | 56 |
7 | TEUNISSEN Mike | 73 |
8 | ANDRESEN Tobias Lund | 69 |
9 | VALTER Attila | 65 |
10 | MEEUS Jordi | 80 |
11 | VACEK Mathias | 75 |
12 | BRENNER Marco | 59 |
13 | GHYS Robbe | 72 |
14 | HERREGODTS Rune | 70 |
15 | VAN DIJKE Mick | 74 |
16 | VAN DEN BERG Marijn | 73 |
17 | ZWIEHOFF Ben | 61 |
18 | VAN DER LIJKE Nick | 61 |
19 | MILESI Lorenzo | 70 |
20 | RUTSCH Jonas | 82 |
21 | JENSEN August | 67 |
22 | EIKING Odd Christian | 75 |
23 | STEINHAUSER Georg | 65 |
24 | DREGE André | 78 |