Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 6
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Řeha
2
72 kgWilksch
4
62 kgLaurance
6
66 kgTeugels
8
64 kgBrenner
9
59 kgVacek
10
75 kgHagen
12
65 kgStockman
13
67 kgNys
14
64 kgOtruba
15
75 kgHeiduk
16
70 kgRavnøy
17
78 kgArtz
18
71 kgGervais
19
72 kgCort
21
68 kgTesfatsion
23
60 kgŠtoček
24
80 kgFlynn
26
67 kgCamprubí
27
69 kg
2
72 kgWilksch
4
62 kgLaurance
6
66 kgTeugels
8
64 kgBrenner
9
59 kgVacek
10
75 kgHagen
12
65 kgStockman
13
67 kgNys
14
64 kgOtruba
15
75 kgHeiduk
16
70 kgRavnøy
17
78 kgArtz
18
71 kgGervais
19
72 kgCort
21
68 kgTesfatsion
23
60 kgŠtoček
24
80 kgFlynn
26
67 kgCamprubí
27
69 kg
Weight (KG) →
Result →
80
59
2
27
# | Rider | Weight (KG) |
---|---|---|
2 | ŘEHA Filip | 72 |
4 | WILKSCH Hannes | 62 |
6 | LAURANCE Axel | 66 |
8 | TEUGELS Lennert | 64 |
9 | BRENNER Marco | 59 |
10 | VACEK Mathias | 75 |
12 | HAGEN Carl Fredrik | 65 |
13 | STOCKMAN Abram | 67 |
14 | NYS Thibau | 64 |
15 | OTRUBA Jakub | 75 |
16 | HEIDUK Kim | 70 |
17 | RAVNØY Johan | 78 |
18 | ARTZ Huub | 71 |
19 | GERVAIS Laurent | 72 |
21 | CORT Magnus | 68 |
23 | TESFATSION Natnael | 60 |
24 | ŠTOČEK Matúš | 80 |
26 | FLYNN Sean | 67 |
27 | CAMPRUBÍ Marcel | 69 |