Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 34
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Howard
1
72 kgKristoff
2
78 kgGreipel
3
80 kgBoonen
4
82 kgRuffoni
5
70 kgBouhanni
6
65 kgVan Hecke
7
69 kgFörster
8
83 kgVan Staeyen
9
62 kgColonna
10
65 kgVanspeybrouck
11
76 kgMarkus
12
75 kgBoem
13
75 kgTerpstra
14
75 kgChainel
15
69 kgBurghardt
16
75 kgTrentin
17
74 kgGallopin
18
69 kgDevolder
19
72 kgBazzana
20
63.5 kgBennett
21
73 kgBožič
22
70 kg
1
72 kgKristoff
2
78 kgGreipel
3
80 kgBoonen
4
82 kgRuffoni
5
70 kgBouhanni
6
65 kgVan Hecke
7
69 kgFörster
8
83 kgVan Staeyen
9
62 kgColonna
10
65 kgVanspeybrouck
11
76 kgMarkus
12
75 kgBoem
13
75 kgTerpstra
14
75 kgChainel
15
69 kgBurghardt
16
75 kgTrentin
17
74 kgGallopin
18
69 kgDevolder
19
72 kgBazzana
20
63.5 kgBennett
21
73 kgBožič
22
70 kg
Weight (KG) →
Result →
83
62
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | HOWARD Leigh | 72 |
2 | KRISTOFF Alexander | 78 |
3 | GREIPEL André | 80 |
4 | BOONEN Tom | 82 |
5 | RUFFONI Nicola | 70 |
6 | BOUHANNI Nacer | 65 |
7 | VAN HECKE Preben | 69 |
8 | FÖRSTER Robert | 83 |
9 | VAN STAEYEN Michael | 62 |
10 | COLONNA Paolo | 65 |
11 | VANSPEYBROUCK Pieter | 76 |
12 | MARKUS Barry | 75 |
13 | BOEM Nicola | 75 |
14 | TERPSTRA Niki | 75 |
15 | CHAINEL Steve | 69 |
16 | BURGHARDT Marcus | 75 |
17 | TRENTIN Matteo | 74 |
18 | GALLOPIN Tony | 69 |
19 | DEVOLDER Stijn | 72 |
20 | BAZZANA Alessandro | 63.5 |
21 | BENNETT Sam | 73 |
22 | BOŽIČ Borut | 70 |