Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 17
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Herrada
1
70 kgMerlier
2
76 kgVan Gils
3
63 kgDekker
4
80 kgUlissi
5
63 kgZingle
6
67 kgMeijers
7
68 kgJorgenson
8
69 kgMarit
9
72 kgVansevenant
11
60 kgHalvorsen
12
69 kgLutsenko
13
74 kgAckermann
14
78 kgÁlvarez
15
65 kgRochas
16
51 kgWalls
17
72 kgRodríguez
18
59 kgSalby
19
68 kgVan Boven
21
68 kgDewulf
22
74 kgKanter
23
68 kgFormolo
24
62 kgSelig
25
80 kg
1
70 kgMerlier
2
76 kgVan Gils
3
63 kgDekker
4
80 kgUlissi
5
63 kgZingle
6
67 kgMeijers
7
68 kgJorgenson
8
69 kgMarit
9
72 kgVansevenant
11
60 kgHalvorsen
12
69 kgLutsenko
13
74 kgAckermann
14
78 kgÁlvarez
15
65 kgRochas
16
51 kgWalls
17
72 kgRodríguez
18
59 kgSalby
19
68 kgVan Boven
21
68 kgDewulf
22
74 kgKanter
23
68 kgFormolo
24
62 kgSelig
25
80 kg
Weight (KG) →
Result →
80
51
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | HERRADA Jesús | 70 |
2 | MERLIER Tim | 76 |
3 | VAN GILS Maxim | 63 |
4 | DEKKER David | 80 |
5 | ULISSI Diego | 63 |
6 | ZINGLE Axel | 67 |
7 | MEIJERS Jeroen | 68 |
8 | JORGENSON Matteo | 69 |
9 | MARIT Arne | 72 |
11 | VANSEVENANT Mauri | 60 |
12 | HALVORSEN Kristoffer | 69 |
13 | LUTSENKO Alexey | 74 |
14 | ACKERMANN Pascal | 78 |
15 | ÁLVAREZ Rodrigo | 65 |
16 | ROCHAS Rémy | 51 |
17 | WALLS Matthew | 72 |
18 | RODRÍGUEZ Cristián | 59 |
19 | SALBY Alexander | 68 |
21 | VAN BOVEN Luca | 68 |
22 | DEWULF Stan | 74 |
23 | KANTER Max | 68 |
24 | FORMOLO Davide | 62 |
25 | SELIG Rüdiger | 80 |