Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -8 * weight + 622
This means that on average for every extra kilogram weight a rider loses -8 positions in the result.
Vervaeke
1
68 kgKooij
2
72 kgParet-Peintre
3
52 kgBittner
4
73 kgÁlvarez
5
65 kgFlynn
7
67 kgBlikra
8
75 kgEngelhardt
9
68 kgD'Amato
10
69 kgBrenner
11
59 kgPluimers
12
67 kgMulubrhan
13
60 kgGaviria
14
71 kgCras
15
65 kgTurgis
16
70 kgYates
17
58 kgGaudu
19
53 kgKulset
23
58 kgNizzolo
24
72 kgGuerreiro
991
65 kgDe Pretto
991
58 kg
1
68 kgKooij
2
72 kgParet-Peintre
3
52 kgBittner
4
73 kgÁlvarez
5
65 kgFlynn
7
67 kgBlikra
8
75 kgEngelhardt
9
68 kgD'Amato
10
69 kgBrenner
11
59 kgPluimers
12
67 kgMulubrhan
13
60 kgGaviria
14
71 kgCras
15
65 kgTurgis
16
70 kgYates
17
58 kgGaudu
19
53 kgKulset
23
58 kgNizzolo
24
72 kgGuerreiro
991
65 kgDe Pretto
991
58 kg
Weight (KG) →
Result →
75
52
1
991
# | Rider | Weight (KG) |
---|---|---|
1 | VERVAEKE Louis | 68 |
2 | KOOIJ Olav | 72 |
3 | PARET-PEINTRE Valentin | 52 |
4 | BITTNER Pavel | 73 |
5 | ÁLVAREZ Rodrigo | 65 |
7 | FLYNN Sean | 67 |
8 | BLIKRA Erlend | 75 |
9 | ENGELHARDT Felix | 68 |
10 | D'AMATO Andrea | 69 |
11 | BRENNER Marco | 59 |
12 | PLUIMERS Rick | 67 |
13 | MULUBRHAN Henok | 60 |
14 | GAVIRIA Fernando | 71 |
15 | CRAS Steff | 65 |
16 | TURGIS Anthony | 70 |
17 | YATES Adam | 58 |
19 | GAUDU David | 53 |
23 | KULSET Magnus | 58 |
24 | NIZZOLO Giacomo | 72 |
991 | GUERREIRO Ruben | 65 |
991 | DE PRETTO Davide | 58 |