Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 36
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Rasch
1
71 kgBanaszek
3
75 kgTrarieux
4
71 kgKaczmarek
7
66 kgBudziński
12
69 kgTomkinson
14
61 kgStolić
15
73 kgNisu
16
84 kgKergozou De La Boessiere
18
74 kgPopov
20
75 kgKim
21
68 kgIderbold
26
58 kgPawlak
28
81 kgDe Rossi
32
70 kgPiccoli
33
65 kgAgnoletto
35
69 kgRäim
38
69 kg
1
71 kgBanaszek
3
75 kgTrarieux
4
71 kgKaczmarek
7
66 kgBudziński
12
69 kgTomkinson
14
61 kgStolić
15
73 kgNisu
16
84 kgKergozou De La Boessiere
18
74 kgPopov
20
75 kgKim
21
68 kgIderbold
26
58 kgPawlak
28
81 kgDe Rossi
32
70 kgPiccoli
33
65 kgAgnoletto
35
69 kgRäim
38
69 kg
Weight (KG) →
Result →
84
58
1
38
# | Rider | Weight (KG) |
---|---|---|
1 | RASCH Jesper | 71 |
3 | BANASZEK Norbert | 75 |
4 | TRARIEUX Julien | 71 |
7 | KACZMAREK Jakub | 66 |
12 | BUDZIŃSKI Tomasz | 69 |
14 | TOMKINSON Tyler | 61 |
15 | STOLIĆ Mihajlo | 73 |
16 | NISU Oskar | 84 |
18 | KERGOZOU DE LA BOESSIERE Nick | 74 |
20 | POPOV Anton | 75 |
21 | KIM Euro | 68 |
26 | IDERBOLD Bold | 58 |
28 | PAWLAK Tobiasz | 81 |
32 | DE ROSSI Lucas | 70 |
33 | PICCOLI James | 65 |
35 | AGNOLETTO Blake | 69 |
38 | RÄIM Mihkel | 69 |