Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 48
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Trarieux
2
71 kgBanaszek
4
75 kgKaczmarek
6
66 kgTomkinson
7
61 kgPopov
8
75 kgBudziński
13
69 kgStolić
18
73 kgNisu
19
84 kgIderbold
20
58 kgKergozou De La Boessiere
21
74 kgPiccoli
22
65 kgKim
23
68 kgDe Rossi
28
70 kgChoe
29
63 kgMattheis
31
66 kgAgnoletto
32
69 kgBaasankhuu
34
62 kgRäim
36
69 kg
2
71 kgBanaszek
4
75 kgKaczmarek
6
66 kgTomkinson
7
61 kgPopov
8
75 kgBudziński
13
69 kgStolić
18
73 kgNisu
19
84 kgIderbold
20
58 kgKergozou De La Boessiere
21
74 kgPiccoli
22
65 kgKim
23
68 kgDe Rossi
28
70 kgChoe
29
63 kgMattheis
31
66 kgAgnoletto
32
69 kgBaasankhuu
34
62 kgRäim
36
69 kg
Weight (KG) →
Result →
84
58
2
36
# | Rider | Weight (KG) |
---|---|---|
2 | TRARIEUX Julien | 71 |
4 | BANASZEK Norbert | 75 |
6 | KACZMAREK Jakub | 66 |
7 | TOMKINSON Tyler | 61 |
8 | POPOV Anton | 75 |
13 | BUDZIŃSKI Tomasz | 69 |
18 | STOLIĆ Mihajlo | 73 |
19 | NISU Oskar | 84 |
20 | IDERBOLD Bold | 58 |
21 | KERGOZOU DE LA BOESSIERE Nick | 74 |
22 | PICCOLI James | 65 |
23 | KIM Euro | 68 |
28 | DE ROSSI Lucas | 70 |
29 | CHOE Hyeong Min | 63 |
31 | MATTHEIS Oliver | 66 |
32 | AGNOLETTO Blake | 69 |
34 | BAASANKHUU Myagmarsuren | 62 |
36 | RÄIM Mihkel | 69 |