Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 49
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Bogdanovičs
2
68 kgLaas
3
76 kgRikunov
4
71 kgWeulink
6
62 kgAgnoletto
7
69 kgHabteab
8
61 kgRaileanu
9
63 kgJanse van Rensburg
10
74 kgBleddyn
12
67 kgPeng
13
65 kgCarstensen
15
69 kgHamdan
18
66 kgBritton
21
69 kgBatt
22
76 kgMusialik
23
63 kgLakasek
24
71 kgMaikin
27
68 kgHadden
28
68 kgLabib Shotorban
29
60 kgIderbold
31
58 kg
2
68 kgLaas
3
76 kgRikunov
4
71 kgWeulink
6
62 kgAgnoletto
7
69 kgHabteab
8
61 kgRaileanu
9
63 kgJanse van Rensburg
10
74 kgBleddyn
12
67 kgPeng
13
65 kgCarstensen
15
69 kgHamdan
18
66 kgBritton
21
69 kgBatt
22
76 kgMusialik
23
63 kgLakasek
24
71 kgMaikin
27
68 kgHadden
28
68 kgLabib Shotorban
29
60 kgIderbold
31
58 kg
Weight (KG) →
Result →
76
58
2
31
# | Rider | Weight (KG) |
---|---|---|
2 | BOGDANOVIČS Māris | 68 |
3 | LAAS Martin | 76 |
4 | RIKUNOV Petr | 71 |
6 | WEULINK Meindert | 62 |
7 | AGNOLETTO Blake | 69 |
8 | HABTEAB Yoel | 61 |
9 | RAILEANU Cristian | 63 |
10 | JANSE VAN RENSBURG Reinardt | 74 |
12 | BLEDDYN Oliver | 67 |
13 | PENG Yuan Tang | 65 |
15 | CARSTENSEN Lucas | 69 |
18 | HAMDAN Wan Abdul Rahman | 66 |
21 | BRITTON Rhys | 69 |
22 | BATT Ethan | 76 |
23 | MUSIALIK Jakub | 63 |
24 | LAKASEK Irwandie | 71 |
27 | MAIKIN Roman | 68 |
28 | HADDEN Nate | 68 |
29 | LABIB SHOTORBAN Ali | 60 |
31 | IDERBOLD Bold | 58 |