Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 65
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Vahtra
1
85 kgPita
2
67 kgScott
3
80 kgWeulink
4
62 kgRikunov
5
71 kgRostovtsev
6
73 kgKim
9
68 kgSzóstka
11
63 kgMaikin
13
68 kgMusialik
19
63 kgLi
20
68 kgDe Rossi
21
70 kgSafarzadeh
24
66 kgBogdanovičs
26
68 kgFeng
28
68 kgTeese
31
58 kgMattheis
34
65 kgNisu
36
84 kgLucca
38
71 kgBeaumont
39
58 kgDorn
41
74 kgHo
44
63 kgIderbold
46
58 kgŞampiyonbisiklet
47
70 kg
1
85 kgPita
2
67 kgScott
3
80 kgWeulink
4
62 kgRikunov
5
71 kgRostovtsev
6
73 kgKim
9
68 kgSzóstka
11
63 kgMaikin
13
68 kgMusialik
19
63 kgLi
20
68 kgDe Rossi
21
70 kgSafarzadeh
24
66 kgBogdanovičs
26
68 kgFeng
28
68 kgTeese
31
58 kgMattheis
34
65 kgNisu
36
84 kgLucca
38
71 kgBeaumont
39
58 kgDorn
41
74 kgHo
44
63 kgIderbold
46
58 kgŞampiyonbisiklet
47
70 kg
Weight (KG) →
Result →
85
58
1
47
# | Rider | Weight (KG) |
---|---|---|
1 | VAHTRA Norman | 85 |
2 | PITA Cristian David | 67 |
3 | SCOTT Cameron | 80 |
4 | WEULINK Meindert | 62 |
5 | RIKUNOV Petr | 71 |
6 | ROSTOVTSEV Sergey | 73 |
9 | KIM Euro | 68 |
11 | SZÓSTKA Paweł | 63 |
13 | MAIKIN Roman | 68 |
19 | MUSIALIK Jakub | 63 |
20 | LI Ting Wei | 68 |
21 | DE ROSSI Lucas | 70 |
24 | SAFARZADEH Saeid | 66 |
26 | BOGDANOVIČS Māris | 68 |
28 | FENG Chun Kai | 68 |
31 | TEESE Ronan | 58 |
34 | MATTHEIS Oliver | 65 |
36 | NISU Oskar | 84 |
38 | LUCCA Simone | 71 |
39 | BEAUMONT Cameron | 58 |
41 | DORN Vinzent | 74 |
44 | HO Yen Yi | 63 |
46 | IDERBOLD Bold | 58 |
47 | ŞAMPIYONBISIKLET Mehmet | 70 |