Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 51
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Vahtra
1
85 kgPita
2
67 kgScott
3
80 kgRikunov
4
71 kgWeulink
6
62 kgRostovtsev
8
73 kgSzóstka
9
63 kgMaikin
10
68 kgKim
15
68 kgMusialik
16
63 kgSafarzadeh
17
66 kgDe Rossi
18
70 kgBogdanovičs
19
68 kgFeng
20
68 kgLi
27
68 kgMattheis
28
65 kgNisu
30
84 kgLucca
32
71 kgHo
36
63 kgIderbold
37
58 kg
1
85 kgPita
2
67 kgScott
3
80 kgRikunov
4
71 kgWeulink
6
62 kgRostovtsev
8
73 kgSzóstka
9
63 kgMaikin
10
68 kgKim
15
68 kgMusialik
16
63 kgSafarzadeh
17
66 kgDe Rossi
18
70 kgBogdanovičs
19
68 kgFeng
20
68 kgLi
27
68 kgMattheis
28
65 kgNisu
30
84 kgLucca
32
71 kgHo
36
63 kgIderbold
37
58 kg
Weight (KG) →
Result →
85
58
1
37
# | Rider | Weight (KG) |
---|---|---|
1 | VAHTRA Norman | 85 |
2 | PITA Cristian David | 67 |
3 | SCOTT Cameron | 80 |
4 | RIKUNOV Petr | 71 |
6 | WEULINK Meindert | 62 |
8 | ROSTOVTSEV Sergey | 73 |
9 | SZÓSTKA Paweł | 63 |
10 | MAIKIN Roman | 68 |
15 | KIM Euro | 68 |
16 | MUSIALIK Jakub | 63 |
17 | SAFARZADEH Saeid | 66 |
18 | DE ROSSI Lucas | 70 |
19 | BOGDANOVIČS Māris | 68 |
20 | FENG Chun Kai | 68 |
27 | LI Ting Wei | 68 |
28 | MATTHEIS Oliver | 65 |
30 | NISU Oskar | 84 |
32 | LUCCA Simone | 71 |
36 | HO Yen Yi | 63 |
37 | IDERBOLD Bold | 58 |