Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 59
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Vahtra
1
85 kgPita
2
67 kgWeulink
3
62 kgScott
4
80 kgRikunov
6
71 kgKim
8
68 kgRostovtsev
9
73 kgSzóstka
10
63 kgMaikin
11
68 kgMusialik
18
63 kgLi
19
68 kgSafarzadeh
21
66 kgDe Rossi
22
70 kgBogdanovičs
24
68 kgFeng
26
68 kgTeese
31
58 kgMattheis
33
65 kgNisu
35
84 kgLucca
37
71 kgHo
41
63 kgIderbold
43
58 kg
1
85 kgPita
2
67 kgWeulink
3
62 kgScott
4
80 kgRikunov
6
71 kgKim
8
68 kgRostovtsev
9
73 kgSzóstka
10
63 kgMaikin
11
68 kgMusialik
18
63 kgLi
19
68 kgSafarzadeh
21
66 kgDe Rossi
22
70 kgBogdanovičs
24
68 kgFeng
26
68 kgTeese
31
58 kgMattheis
33
65 kgNisu
35
84 kgLucca
37
71 kgHo
41
63 kgIderbold
43
58 kg
Weight (KG) →
Result →
85
58
1
43
# | Rider | Weight (KG) |
---|---|---|
1 | VAHTRA Norman | 85 |
2 | PITA Cristian David | 67 |
3 | WEULINK Meindert | 62 |
4 | SCOTT Cameron | 80 |
6 | RIKUNOV Petr | 71 |
8 | KIM Euro | 68 |
9 | ROSTOVTSEV Sergey | 73 |
10 | SZÓSTKA Paweł | 63 |
11 | MAIKIN Roman | 68 |
18 | MUSIALIK Jakub | 63 |
19 | LI Ting Wei | 68 |
21 | SAFARZADEH Saeid | 66 |
22 | DE ROSSI Lucas | 70 |
24 | BOGDANOVIČS Māris | 68 |
26 | FENG Chun Kai | 68 |
31 | TEESE Ronan | 58 |
33 | MATTHEIS Oliver | 65 |
35 | NISU Oskar | 84 |
37 | LUCCA Simone | 71 |
41 | HO Yen Yi | 63 |
43 | IDERBOLD Bold | 58 |