Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 13
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Ventoso
1
75 kgChavanel
2
77 kgHunter
3
72 kgJurčo
4
69 kgBoonen
5
82 kgChicchi
6
76 kgJégou
7
71 kgPollack
8
77 kgHinault
10
63 kgTraksel
11
72 kgUsov
12
63 kgSentjens
14
75 kgOngarato
15
69 kgMcEwen
16
67 kgAlbasini
17
65 kgHøj
18
80 kgNazon
19
74 kgCadamuro
21
78 kgBaumann
22
72 kgMichaelsen
23
79 kg
1
75 kgChavanel
2
77 kgHunter
3
72 kgJurčo
4
69 kgBoonen
5
82 kgChicchi
6
76 kgJégou
7
71 kgPollack
8
77 kgHinault
10
63 kgTraksel
11
72 kgUsov
12
63 kgSentjens
14
75 kgOngarato
15
69 kgMcEwen
16
67 kgAlbasini
17
65 kgHøj
18
80 kgNazon
19
74 kgCadamuro
21
78 kgBaumann
22
72 kgMichaelsen
23
79 kg
Weight (KG) →
Result →
82
63
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | VENTOSO Francisco José | 75 |
2 | CHAVANEL Sébastien | 77 |
3 | HUNTER Robert | 72 |
4 | JURČO Matej | 69 |
5 | BOONEN Tom | 82 |
6 | CHICCHI Francesco | 76 |
7 | JÉGOU Lilian | 71 |
8 | POLLACK Olaf | 77 |
10 | HINAULT Sébastien | 63 |
11 | TRAKSEL Bobbie | 72 |
12 | USOV Alexandre | 63 |
14 | SENTJENS Roy | 75 |
15 | ONGARATO Alberto | 69 |
16 | MCEWEN Robbie | 67 |
17 | ALBASINI Michael | 65 |
18 | HØJ Frank | 80 |
19 | NAZON Jean-Patrick | 74 |
21 | CADAMURO Simone | 78 |
22 | BAUMANN Eric | 72 |
23 | MICHAELSEN Lars | 79 |