Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 58
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Boonen
1
82 kgCipollini
2
77 kgHunter
3
72 kgClerc
4
71 kgCadamuro
5
78 kgVentoso
7
75 kgSiedler
8
75 kgMondory
9
66 kgMcEwen
10
67 kgRodriguez
11
68 kgUsov
14
63 kgGreipel
16
80 kgHammond
18
71 kgten Dam
19
67 kgGuidi
20
73 kgBaumann
22
72 kgSchröder
23
64 kgZanotti
24
70 kg
1
82 kgCipollini
2
77 kgHunter
3
72 kgClerc
4
71 kgCadamuro
5
78 kgVentoso
7
75 kgSiedler
8
75 kgMondory
9
66 kgMcEwen
10
67 kgRodriguez
11
68 kgUsov
14
63 kgGreipel
16
80 kgHammond
18
71 kgten Dam
19
67 kgGuidi
20
73 kgBaumann
22
72 kgSchröder
23
64 kgZanotti
24
70 kg
Weight (KG) →
Result →
82
63
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | BOONEN Tom | 82 |
2 | CIPOLLINI Mario | 77 |
3 | HUNTER Robert | 72 |
4 | CLERC Aurélien | 71 |
5 | CADAMURO Simone | 78 |
7 | VENTOSO Francisco José | 75 |
8 | SIEDLER Sebastian | 75 |
9 | MONDORY Lloyd | 66 |
10 | MCEWEN Robbie | 67 |
11 | RODRIGUEZ Fred | 68 |
14 | USOV Alexandre | 63 |
16 | GREIPEL André | 80 |
18 | HAMMOND Roger | 71 |
19 | TEN DAM Laurens | 67 |
20 | GUIDI Fabrizio | 73 |
22 | BAUMANN Eric | 72 |
23 | SCHRÖDER Björn | 64 |
24 | ZANOTTI Marco | 70 |