Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 20
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Boonen
1
82 kgZabel
2
69 kgHunter
3
72 kgClerc
4
71 kgCancellara
5
80 kgGuidi
6
73 kgIngels
7
70 kgLang
8
77 kgde Jongh
9
76 kgVierhouten
10
71 kgJalabert
11
68 kgvan Hummel
12
64 kgBreschel
13
70 kgTjallingii
14
81 kgTrenti
15
68 kgTosatto
16
74 kgHulsmans
17
75 kgKnaven
18
68 kgSieberg
19
80 kgvan Bon
20
72 kg
1
82 kgZabel
2
69 kgHunter
3
72 kgClerc
4
71 kgCancellara
5
80 kgGuidi
6
73 kgIngels
7
70 kgLang
8
77 kgde Jongh
9
76 kgVierhouten
10
71 kgJalabert
11
68 kgvan Hummel
12
64 kgBreschel
13
70 kgTjallingii
14
81 kgTrenti
15
68 kgTosatto
16
74 kgHulsmans
17
75 kgKnaven
18
68 kgSieberg
19
80 kgvan Bon
20
72 kg
Weight (KG) →
Result →
82
64
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | BOONEN Tom | 82 |
2 | ZABEL Erik | 69 |
3 | HUNTER Robert | 72 |
4 | CLERC Aurélien | 71 |
5 | CANCELLARA Fabian | 80 |
6 | GUIDI Fabrizio | 73 |
7 | INGELS Nick | 70 |
8 | LANG Sebastian | 77 |
9 | DE JONGH Steven | 76 |
10 | VIERHOUTEN Aart | 71 |
11 | JALABERT Nicolas | 68 |
12 | VAN HUMMEL Kenny | 64 |
13 | BRESCHEL Matti | 70 |
14 | TJALLINGII Maarten | 81 |
15 | TRENTI Guido | 68 |
16 | TOSATTO Matteo | 74 |
17 | HULSMANS Kevin | 75 |
18 | KNAVEN Servais | 68 |
19 | SIEBERG Marcel | 80 |
20 | VAN BON Léon | 72 |