Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 33
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Boonen
1
82 kgVan Avermaet
2
74 kgNapolitano
3
81 kgSutton
4
67 kgde Jongh
5
76 kgRoelandts
6
78 kgPichot
7
72 kgTjallingii
8
81 kgCretskens
9
75 kgTosatto
10
74 kgBäckstedt
11
94 kgWynants
12
74 kgWagner
13
75 kgPagliarini
14
68 kgWeylandt
15
72 kgHulsmans
16
75 kgVeelers
17
75 kgFurlan
18
72 kgBossoni
19
62 kgGardeyn
20
75 kgHovelijnck
21
75 kg
1
82 kgVan Avermaet
2
74 kgNapolitano
3
81 kgSutton
4
67 kgde Jongh
5
76 kgRoelandts
6
78 kgPichot
7
72 kgTjallingii
8
81 kgCretskens
9
75 kgTosatto
10
74 kgBäckstedt
11
94 kgWynants
12
74 kgWagner
13
75 kgPagliarini
14
68 kgWeylandt
15
72 kgHulsmans
16
75 kgVeelers
17
75 kgFurlan
18
72 kgBossoni
19
62 kgGardeyn
20
75 kgHovelijnck
21
75 kg
Weight (KG) →
Result →
94
62
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | BOONEN Tom | 82 |
2 | VAN AVERMAET Greg | 74 |
3 | NAPOLITANO Danilo | 81 |
4 | SUTTON Chris | 67 |
5 | DE JONGH Steven | 76 |
6 | ROELANDTS Jürgen | 78 |
7 | PICHOT Alexandre | 72 |
8 | TJALLINGII Maarten | 81 |
9 | CRETSKENS Wilfried | 75 |
10 | TOSATTO Matteo | 74 |
11 | BÄCKSTEDT Magnus | 94 |
12 | WYNANTS Maarten | 74 |
13 | WAGNER Robert | 75 |
14 | PAGLIARINI Luciano André | 68 |
15 | WEYLANDT Wouter | 72 |
16 | HULSMANS Kevin | 75 |
17 | VEELERS Tom | 75 |
18 | FURLAN Angelo | 72 |
19 | BOSSONI Paolo | 62 |
20 | GARDEYN Gorik | 75 |
21 | HOVELIJNCK Kurt | 75 |