Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 24
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Navardauskas
1
79 kgBlythe
2
68 kgGallopin
3
69 kgDegenkolb
4
82 kgSelig
5
80 kgVan Keirsbulck
6
89 kgSinkeldam
7
77 kgOss
8
75 kgDémare
9
76 kgNizzolo
10
72 kgSagan
11
78 kgAppollonio
12
67 kgHaller
13
72 kgKristoff
14
78 kgGuardini
15
66 kgStannard
16
83 kgLodewyck
17
70 kgSoupe
18
70 kgRathe
19
74 kgGalimzyanov
20
75 kgDebusschere
22
77 kgPhinney
24
82 kgvan Winden
25
70 kg
1
79 kgBlythe
2
68 kgGallopin
3
69 kgDegenkolb
4
82 kgSelig
5
80 kgVan Keirsbulck
6
89 kgSinkeldam
7
77 kgOss
8
75 kgDémare
9
76 kgNizzolo
10
72 kgSagan
11
78 kgAppollonio
12
67 kgHaller
13
72 kgKristoff
14
78 kgGuardini
15
66 kgStannard
16
83 kgLodewyck
17
70 kgSoupe
18
70 kgRathe
19
74 kgGalimzyanov
20
75 kgDebusschere
22
77 kgPhinney
24
82 kgvan Winden
25
70 kg
Weight (KG) →
Result →
89
66
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | NAVARDAUSKAS Ramūnas | 79 |
2 | BLYTHE Adam | 68 |
3 | GALLOPIN Tony | 69 |
4 | DEGENKOLB John | 82 |
5 | SELIG Rüdiger | 80 |
6 | VAN KEIRSBULCK Guillaume | 89 |
7 | SINKELDAM Ramon | 77 |
8 | OSS Daniel | 75 |
9 | DÉMARE Arnaud | 76 |
10 | NIZZOLO Giacomo | 72 |
11 | SAGAN Peter | 78 |
12 | APPOLLONIO Davide | 67 |
13 | HALLER Marco | 72 |
14 | KRISTOFF Alexander | 78 |
15 | GUARDINI Andrea | 66 |
16 | STANNARD Ian | 83 |
17 | LODEWYCK Klaas | 70 |
18 | SOUPE Geoffrey | 70 |
19 | RATHE Jacob | 74 |
20 | GALIMZYANOV Denis | 75 |
22 | DEBUSSCHERE Jens | 77 |
24 | PHINNEY Taylor | 82 |
25 | VAN WINDEN Dennis | 70 |