Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 12
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Cavendish
1
70 kgBookwalter
2
70 kgElmiger
3
73 kgMarkus
4
75 kgEisel
5
74 kgKruopis
6
80 kgRast
7
80 kgHaussler
8
74 kgPhinney
9
82 kgBouhanni
10
65 kgBoasson Hagen
11
75 kgViviani
12
67 kgDegenkolb
13
82 kgBreschel
14
70 kgKluge
15
83 kgBlythe
16
68 kgHayman
17
78 kgKristoff
18
78 kgFortin
19
78 kgJang
20
64 kgLadagnous
21
73 kgSoupe
22
70 kgGruzdev
23
78 kg
1
70 kgBookwalter
2
70 kgElmiger
3
73 kgMarkus
4
75 kgEisel
5
74 kgKruopis
6
80 kgRast
7
80 kgHaussler
8
74 kgPhinney
9
82 kgBouhanni
10
65 kgBoasson Hagen
11
75 kgViviani
12
67 kgDegenkolb
13
82 kgBreschel
14
70 kgKluge
15
83 kgBlythe
16
68 kgHayman
17
78 kgKristoff
18
78 kgFortin
19
78 kgJang
20
64 kgLadagnous
21
73 kgSoupe
22
70 kgGruzdev
23
78 kg
Weight (KG) →
Result →
83
64
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | CAVENDISH Mark | 70 |
2 | BOOKWALTER Brent | 70 |
3 | ELMIGER Martin | 73 |
4 | MARKUS Barry | 75 |
5 | EISEL Bernhard | 74 |
6 | KRUOPIS Aidis | 80 |
7 | RAST Grégory | 80 |
8 | HAUSSLER Heinrich | 74 |
9 | PHINNEY Taylor | 82 |
10 | BOUHANNI Nacer | 65 |
11 | BOASSON HAGEN Edvald | 75 |
12 | VIVIANI Elia | 67 |
13 | DEGENKOLB John | 82 |
14 | BRESCHEL Matti | 70 |
15 | KLUGE Roger | 83 |
16 | BLYTHE Adam | 68 |
17 | HAYMAN Mathew | 78 |
18 | KRISTOFF Alexander | 78 |
19 | FORTIN Filippo | 78 |
20 | JANG Chan Jae | 64 |
21 | LADAGNOUS Matthieu | 73 |
22 | SOUPE Geoffrey | 70 |
23 | GRUZDEV Dmitriy | 78 |