Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 29
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Terpstra
1
75 kgRoelandts
2
78 kgBoonen
3
82 kgMørkøv
4
71 kgSchär
5
78 kgFenn
6
79 kgElmiger
7
73 kgBreschel
8
70 kgVan Keirsbulck
9
89 kgStannard
10
83 kgSieberg
11
80 kgMarkus
12
75 kgMaes
13
78 kgDémare
14
76 kgBoom
15
75 kgVan Staeyen
16
62 kgKristoff
17
78 kgKroon
18
67 kgKruopis
19
80 kgBennett
20
73 kg
1
75 kgRoelandts
2
78 kgBoonen
3
82 kgMørkøv
4
71 kgSchär
5
78 kgFenn
6
79 kgElmiger
7
73 kgBreschel
8
70 kgVan Keirsbulck
9
89 kgStannard
10
83 kgSieberg
11
80 kgMarkus
12
75 kgMaes
13
78 kgDémare
14
76 kgBoom
15
75 kgVan Staeyen
16
62 kgKristoff
17
78 kgKroon
18
67 kgKruopis
19
80 kgBennett
20
73 kg
Weight (KG) →
Result →
89
62
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | TERPSTRA Niki | 75 |
2 | ROELANDTS Jürgen | 78 |
3 | BOONEN Tom | 82 |
4 | MØRKØV Michael | 71 |
5 | SCHÄR Michael | 78 |
6 | FENN Andrew | 79 |
7 | ELMIGER Martin | 73 |
8 | BRESCHEL Matti | 70 |
9 | VAN KEIRSBULCK Guillaume | 89 |
10 | STANNARD Ian | 83 |
11 | SIEBERG Marcel | 80 |
12 | MARKUS Barry | 75 |
13 | MAES Nikolas | 78 |
14 | DÉMARE Arnaud | 76 |
15 | BOOM Lars | 75 |
16 | VAN STAEYEN Michael | 62 |
17 | KRISTOFF Alexander | 78 |
18 | KROON Karsten | 67 |
19 | KRUOPIS Aidis | 80 |
20 | BENNETT Sam | 73 |